Redox cycling in nanoporous electrochemical devices

被引:28
作者
Hueske, Martin [1 ,2 ]
Stockmann, Regina [1 ,2 ]
Offenhaeusser, Andreas [1 ,2 ,3 ]
Wolfrum, Bernhard [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Bioelect PGI ICS 8 8, D-52425 Julich, Germany
[2] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Phys 4, D-52074 Aachen, Germany
关键词
INTERDIGITATED ARRAY ELECTRODES; NANOBAND ELECTRODES; SELECTIVE DETECTION; RECESSED MICRODISK; DISK ELECTRODES; NANOFLUIDIC CHANNELS; TRANSFER KINETICS; SINGLE MOLECULES; ASCORBIC-ACID; CHIP DEVICE;
D O I
10.1039/c3nr03818a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscale redox cycling is a powerful technique for detecting electrochemically active molecules, based on fast repetitive oxidation and reduction reactions. An ideal implementation of redox cycling sensors can be realized by nanoporous dual-electrode systems in easily accessible and scalable geometries. Here, we introduce a multi-electrode array device with highly efficient nanoporous redox cycling sensors. Each of the sensors holds up to 209 000 well defined nanopores with minimal pore radii of less than 40 nm and an electrode separation of similar to 100 nm. We demonstrate the efficiency of the nanopore array by screening a large concentration range over three orders of magnitude with area-specific sensitivities of up to 81.0 mA (cm(-2) mM(-1)) for the redox-active probe ferrocene dimethanol. Furthermore, due to the specific geometry of the material, reaction kinetics has a unique potential-dependent impact on the signal characteristics. As a result, redox cycling experiments in the nanoporous structure allow studies on heterogeneous electron transfer reactions revealing a surprisingly asymmetric transfer coefficient.
引用
收藏
页码:589 / 598
页数:10
相关论文
共 50 条
[21]   Redox Cycling in Nanoscale-Recessed Ring-Disk Electrode Arrays for Enhanced Electrochemical Sensitivity [J].
Ma, Chaoxiong ;
Contento, Nicholas M. ;
Gibson, Larry R., II ;
Bohn, Paul W. .
ACS NANO, 2013, 7 (06) :5483-5490
[22]   Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes [J].
Ma, Chaoxiong ;
Zaino, Lawrence P., III ;
Bohn, Paul W. .
CHEMICAL SCIENCE, 2015, 6 (05) :3173-3179
[23]   Nanocavity Redox Cycling Sensors for the Detection of Dopamine Fluctuations in Microfluidic Gradients [J].
Kaetelhoen, Enno ;
Hofmann, Boris ;
Lemay, Serge G. ;
Zevenbergen, Marcel A. G. ;
Offenhaeusser, Andreas ;
Wolfrum, Bernhard .
ANALYTICAL CHEMISTRY, 2010, 82 (20) :8502-8509
[24]   Three-dimensional inkjet-printed redox cycling sensor [J].
Adly, N. Y. ;
Bachmann, B. ;
Krause, K. J. ;
Offenhaeusser, A. ;
Wolfrum, B. ;
Yakushenko, A. .
RSC ADVANCES, 2017, 7 (09) :5473-5479
[25]   Electrochemical analysis based on nanoporous structures [J].
Park, Sangyun ;
Kim, Hee Chan ;
Chung, Taek Dong .
ANALYST, 2012, 137 (17) :3891-3903
[26]   Redox cycling of quinones reduced by ascorbic acid [J].
Njus, David ;
Asmaro, Karam ;
Li, Guoliang ;
Palomino, Eduardo .
CHEMICO-BIOLOGICAL INTERACTIONS, 2023, 373
[27]   Redox Properties and Activity of Iron-Citrate Complexes: Evidence for Redox Cycling [J].
Adam, Fatima I. ;
Bounds, Patricia L. ;
Kissner, Reinhard ;
Koppenol, Willem H. .
CHEMICAL RESEARCH IN TOXICOLOGY, 2015, 28 (04) :604-614
[28]   Diamond Electrochemical Devices [J].
Yang, Nianjun .
NOVEL ASPECTS OF DIAMOND: FROM GROWTH TO APPLICATIONS, 2ND EDITION, 2019, 121 :223-256
[29]   Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox MoleculesWithout Micro/Nano Fabrication Process [J].
Yamamoto, So ;
Uno, Shigeyasu .
SENSORS, 2018, 18 (03)
[30]   Redox cycling in nanofluidic channels using interdigitated electrodes [J].
Edgar D. Goluch ;
Bernhard Wolfrum ;
Pradyumna S. Singh ;
Marcel A. G. Zevenbergen ;
Serge G. Lemay .
Analytical and Bioanalytical Chemistry, 2009, 394 :447-456