Redox cycling in nanoporous electrochemical devices

被引:28
作者
Hueske, Martin [1 ,2 ]
Stockmann, Regina [1 ,2 ]
Offenhaeusser, Andreas [1 ,2 ,3 ]
Wolfrum, Bernhard [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Bioelect PGI ICS 8 8, D-52425 Julich, Germany
[2] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Phys 4, D-52074 Aachen, Germany
关键词
INTERDIGITATED ARRAY ELECTRODES; NANOBAND ELECTRODES; SELECTIVE DETECTION; RECESSED MICRODISK; DISK ELECTRODES; NANOFLUIDIC CHANNELS; TRANSFER KINETICS; SINGLE MOLECULES; ASCORBIC-ACID; CHIP DEVICE;
D O I
10.1039/c3nr03818a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscale redox cycling is a powerful technique for detecting electrochemically active molecules, based on fast repetitive oxidation and reduction reactions. An ideal implementation of redox cycling sensors can be realized by nanoporous dual-electrode systems in easily accessible and scalable geometries. Here, we introduce a multi-electrode array device with highly efficient nanoporous redox cycling sensors. Each of the sensors holds up to 209 000 well defined nanopores with minimal pore radii of less than 40 nm and an electrode separation of similar to 100 nm. We demonstrate the efficiency of the nanopore array by screening a large concentration range over three orders of magnitude with area-specific sensitivities of up to 81.0 mA (cm(-2) mM(-1)) for the redox-active probe ferrocene dimethanol. Furthermore, due to the specific geometry of the material, reaction kinetics has a unique potential-dependent impact on the signal characteristics. As a result, redox cycling experiments in the nanoporous structure allow studies on heterogeneous electron transfer reactions revealing a surprisingly asymmetric transfer coefficient.
引用
收藏
页码:589 / 598
页数:10
相关论文
共 50 条
  • [21] Redox Cycling in Nanoscale-Recessed Ring-Disk Electrode Arrays for Enhanced Electrochemical Sensitivity
    Ma, Chaoxiong
    Contento, Nicholas M.
    Gibson, Larry R., II
    Bohn, Paul W.
    ACS NANO, 2013, 7 (06) : 5483 - 5490
  • [22] Nanocavity Redox Cycling Sensors for the Detection of Dopamine Fluctuations in Microfluidic Gradients
    Kaetelhoen, Enno
    Hofmann, Boris
    Lemay, Serge G.
    Zevenbergen, Marcel A. G.
    Offenhaeusser, Andreas
    Wolfrum, Bernhard
    ANALYTICAL CHEMISTRY, 2010, 82 (20) : 8502 - 8509
  • [23] Three-dimensional inkjet-printed redox cycling sensor
    Adly, N. Y.
    Bachmann, B.
    Krause, K. J.
    Offenhaeusser, A.
    Wolfrum, B.
    Yakushenko, A.
    RSC ADVANCES, 2017, 7 (09): : 5473 - 5479
  • [24] Electrochemical analysis based on nanoporous structures
    Park, Sangyun
    Kim, Hee Chan
    Chung, Taek Dong
    ANALYST, 2012, 137 (17) : 3891 - 3903
  • [25] Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes
    Ma, Chaoxiong
    Zaino, Lawrence P., III
    Bohn, Paul W.
    CHEMICAL SCIENCE, 2015, 6 (05) : 3173 - 3179
  • [26] Redox cycling of quinones reduced by ascorbic acid
    Njus, David
    Asmaro, Karam
    Li, Guoliang
    Palomino, Eduardo
    CHEMICO-BIOLOGICAL INTERACTIONS, 2023, 373
  • [27] Redox Properties and Activity of Iron-Citrate Complexes: Evidence for Redox Cycling
    Adam, Fatima I.
    Bounds, Patricia L.
    Kissner, Reinhard
    Koppenol, Willem H.
    CHEMICAL RESEARCH IN TOXICOLOGY, 2015, 28 (04) : 604 - 614
  • [28] Diamond Electrochemical Devices
    Yang, Nianjun
    NOVEL ASPECTS OF DIAMOND: FROM GROWTH TO APPLICATIONS, 2ND EDITION, 2019, 121 : 223 - 256
  • [29] Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox MoleculesWithout Micro/Nano Fabrication Process
    Yamamoto, So
    Uno, Shigeyasu
    SENSORS, 2018, 18 (03):
  • [30] Optical Bioassays Based on the Signal Amplification of Redox Cycling
    Feng, Yunxiao
    Gao, Fengli
    Yi, Xinyao
    La, Ming
    BIOSENSORS-BASEL, 2024, 14 (06):