Redox cycling in nanoporous electrochemical devices

被引:28
|
作者
Hueske, Martin [1 ,2 ]
Stockmann, Regina [1 ,2 ]
Offenhaeusser, Andreas [1 ,2 ,3 ]
Wolfrum, Bernhard [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Bioelect PGI ICS 8 8, D-52425 Julich, Germany
[2] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Phys 4, D-52074 Aachen, Germany
关键词
INTERDIGITATED ARRAY ELECTRODES; NANOBAND ELECTRODES; SELECTIVE DETECTION; RECESSED MICRODISK; DISK ELECTRODES; NANOFLUIDIC CHANNELS; TRANSFER KINETICS; SINGLE MOLECULES; ASCORBIC-ACID; CHIP DEVICE;
D O I
10.1039/c3nr03818a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscale redox cycling is a powerful technique for detecting electrochemically active molecules, based on fast repetitive oxidation and reduction reactions. An ideal implementation of redox cycling sensors can be realized by nanoporous dual-electrode systems in easily accessible and scalable geometries. Here, we introduce a multi-electrode array device with highly efficient nanoporous redox cycling sensors. Each of the sensors holds up to 209 000 well defined nanopores with minimal pore radii of less than 40 nm and an electrode separation of similar to 100 nm. We demonstrate the efficiency of the nanopore array by screening a large concentration range over three orders of magnitude with area-specific sensitivities of up to 81.0 mA (cm(-2) mM(-1)) for the redox-active probe ferrocene dimethanol. Furthermore, due to the specific geometry of the material, reaction kinetics has a unique potential-dependent impact on the signal characteristics. As a result, redox cycling experiments in the nanoporous structure allow studies on heterogeneous electron transfer reactions revealing a surprisingly asymmetric transfer coefficient.
引用
收藏
页码:589 / 598
页数:10
相关论文
共 50 条
  • [1] Nanoporous dual-electrodes with millimetre extensions: parallelized fabrication and area effects on redox cycling
    Hueske, Martin
    Offenhaeusser, Andreas
    Wolfrum, Bernhard
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (23) : 11609 - 11616
  • [2] On-chip redox cycling techniques for electrochemical detection
    Kaetelhoen, Enno
    Wolfrum, Bernhard
    REVIEWS IN ANALYTICAL CHEMISTRY, 2012, 31 (01) : 7 - 14
  • [3] Redox cycling-based electrochemical CMOS imaging sensor for real time and selective imaging of redox analytes
    Abe, Hiroya
    Yabu, Hiroshi
    Kunikata, Ryota
    Suda, Atsushi
    Matsudaira, Masahki
    Matsue, Tomokazu
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 304 (304):
  • [4] Electrochemical redox cycling in a new nanogap sensor: Design and simulation
    Zafarani, Hamid Reza
    Mathwig, Klaus
    Sudholter, Ernst J. R.
    Rassaei, Liza
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 760 : 42 - 47
  • [5] Electrochemical Redox Cycling with Pyrolytic Carbon Stacked-Layer Nanogap Electrodes
    Stovring, Nicolai
    Heiskanen, Arto R.
    Emneus, Jenny
    Sylvest Keller, Stephan
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (09) : 14375 - 14388
  • [6] Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems
    Wolfrum, Bernhard
    Kaetelhoen, Enno
    Yakushenko, Alexey
    Krause, Kay J.
    Adly, Nouran
    Hueske, Martin
    Rinklin, Philipp
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (09) : 2031 - 2040
  • [7] Local Redox-cycling-based Electrochemical System for Bioimaging
    Ino, Kosuke
    Shiku, Hitoshi
    Matsue, Tomokazu
    BUNSEKI KAGAKU, 2015, 64 (09) : 669 - 678
  • [8] Application of Electrochemical Redox Cycling: Toward Differentiation of Dopamine and Norepinephrine
    Hu, Mengjia
    Fritsch, Ingrid
    ANALYTICAL CHEMISTRY, 2016, 88 (11) : 5574 - 5578
  • [9] A simple method to fabricate electrochemical sensor systems with predictable high-redox cycling amplification
    Straver, M. G.
    Odijk, M.
    Olthuis, W.
    van den Berg, A.
    LAB ON A CHIP, 2012, 12 (08) : 1548 - 1553
  • [10] Sensing with nanopores - the influence of asymmetric blocking on electrochemical redox cycling current
    Krause, Kay J.
    Kaetelhoen, Enno
    Lemay, Serge G.
    Compton, Richard G.
    Wolfrum, Bernhard
    ANALYST, 2014, 139 (21) : 5499 - 5503