ON THE APPLICATION OF GEOMETRIC OPTIMAL CONTROL THEORY TO NUCLEAR MAGNETIC RESONANCE

被引:7
作者
Assemat, Elie [1 ]
Lapert, Marc [1 ]
Sugny, Dominique [1 ]
Glaser, Steffen J. [2 ]
机构
[1] Univ Bourgogne, CNRS, UMR 5209, Lab Interdisciplinaire Carnot Bourgogne ICB, F-21078 Dijon, France
[2] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany
关键词
Geometrical optimal control; Nuclear Magnetic Resonance; Pontryagin Maximum Principle; contrast problem; BROAD-BAND EXCITATION; IMAGING PROBLEM; SPIN DYNAMICS; PULSES; INVERSION; DESIGN; SPECTROSCOPY; TRAJECTORIES; SYSTEMS; LIMITS;
D O I
10.3934/mcrf.2013.3.375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some applications of geometric optimal control theory to control problems in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). Using the Pontryagin Maximum Principle (PMP), the optimal trajectories are found as solutions of a pseudo-Hamiltonian system. This computation can be completed by second-order optimality conditions based on the concept of conjugate points. After a brief physical introduction to NMR, this approach is applied to analyze two relevant optimal control issues in NMR and MRI: the control of a spin 1/2 particle in presence of radiation damping effect and the maximization of the contrast in MRI. The theoretical analysis is completed by numerical computations. This work has been made possible by the central and essential role of B. Bonnard, who has been at the heart of this project since 2009.
引用
收藏
页码:375 / 396
页数:22
相关论文
共 50 条
[21]   NUCLEAR MAGNETIC RESONANCE AND HYPHENATIONS - A REVIEW [J].
Gummadi, S. ;
Siyyadri, D. S. .
INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2020, 11 (12) :5932-5950
[22]   Classical Computing in Nuclear Magnetic Resonance [J].
Rosello-Merino, Marta ;
Bechmann, Matthias ;
Sebald, Angelika ;
Stepney, Susan .
INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2010, 6 (3-4) :163-195
[23]   Application Basis of Nuclear Magnetic Resonance Technology in the Unconventional Reservoirs [J].
Yang Z. ;
Zhang Y. ;
Li H. ;
Zheng X. ;
Lei Q. .
Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 2017, 42 (08) :1333-1339
[24]   Application of Nuclear Magnetic Resonance Imagingin Oilfield Development in China [J].
Zhang Shengzong ;
Wang Weimin and Hu Yareng(Institute of Porous Flow ;
CNPC & Chinese Academy of Sciences) .
China Oil & Gas, 1996, (01) :47-49
[25]   Quality control of phytopharmaceuticals with the use of Nuclear Magnetic Resonance (NMR) and the application of principal component analysis (PCA) [J].
Quesada-Espinoza, Javier ;
Murillo-Masis, Renato .
TECNOLOGIA EN MARCHA, 2019, 32 (04) :81-94
[26]   ALGEBRAIC GEOMETRIC CLASSIFICATION OF THE SINGULAR FLOW IN THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE [J].
Bonnard, Bernard ;
Chyba, Monique ;
Jacquemard, Alain ;
Marriott, John .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (04) :397-432
[27]   Discrete-valued-pulse optimal control algorithms: Application to spin systems [J].
Dridi, G. ;
Lapert, M. ;
Salomon, J. ;
Glaser, S. J. ;
Sugny, D. .
PHYSICAL REVIEW A, 2015, 92 (04)
[28]   Quality Control of Activated Carbon by the Nuclear Magnetic Resonance Method [J].
Safin, Rushan G. ;
Sotnikov, Viktor G. ;
Grunin, Leonid Yu. ;
Ivanova, Maria S. ;
Ziatdinova, Dilyara F. .
LESNOY ZHURNAL-FORESTRY JOURNAL, 2022, (05) :173-185
[29]   Off-resonance effects in surface nuclear magnetic resonance [J].
Walbrecker, Jan O. ;
Hertrich, Marian ;
Green, Alan G. .
GEOPHYSICS, 2011, 76 (02) :G1-G12
[30]   Average Liouvillian theory in nuclear magnetic resonance - Principles, properties, and applications [J].
Ghose, R .
CONCEPTS IN MAGNETIC RESONANCE, 2000, 12 (03) :152-172