ON THE APPLICATION OF GEOMETRIC OPTIMAL CONTROL THEORY TO NUCLEAR MAGNETIC RESONANCE

被引:7
作者
Assemat, Elie [1 ]
Lapert, Marc [1 ]
Sugny, Dominique [1 ]
Glaser, Steffen J. [2 ]
机构
[1] Univ Bourgogne, CNRS, UMR 5209, Lab Interdisciplinaire Carnot Bourgogne ICB, F-21078 Dijon, France
[2] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany
关键词
Geometrical optimal control; Nuclear Magnetic Resonance; Pontryagin Maximum Principle; contrast problem; BROAD-BAND EXCITATION; IMAGING PROBLEM; SPIN DYNAMICS; PULSES; INVERSION; DESIGN; SPECTROSCOPY; TRAJECTORIES; SYSTEMS; LIMITS;
D O I
10.3934/mcrf.2013.3.375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some applications of geometric optimal control theory to control problems in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). Using the Pontryagin Maximum Principle (PMP), the optimal trajectories are found as solutions of a pseudo-Hamiltonian system. This computation can be completed by second-order optimality conditions based on the concept of conjugate points. After a brief physical introduction to NMR, this approach is applied to analyze two relevant optimal control issues in NMR and MRI: the control of a spin 1/2 particle in presence of radiation damping effect and the maximization of the contrast in MRI. The theoretical analysis is completed by numerical computations. This work has been made possible by the central and essential role of B. Bonnard, who has been at the heart of this project since 2009.
引用
收藏
页码:375 / 396
页数:22
相关论文
共 50 条
[11]   Application of optimal control to CPMG refocusing pulse design [J].
Borneman, Troy W. ;
Huerlimann, Martin D. ;
Cory, David G. .
JOURNAL OF MAGNETIC RESONANCE, 2010, 207 (02) :220-233
[12]   A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design [J].
Maximov, Ivan I. ;
Salomon, Julien ;
Turinici, Gabriel ;
Nielsen, Niels Chr. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (08)
[13]   Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system [J].
Wang, Z. S. ;
Liu, G. Q. ;
Ji, Y. H. .
PHYSICAL REVIEW A, 2009, 79 (05)
[14]   A digital twin for parallel liquid-state nuclear magnetic resonance spectroscopy [J].
He, Mengjia ;
Faderl, Dilara ;
MacKinnon, Neil ;
Cheng, Yen-Tse ;
Buyens, Dominique ;
Jouda, Mazin ;
Luy, Burkhard ;
Korvink, Jan G. .
COMMUNICATIONS ENGINEERING, 2024, 3 (01)
[15]   Theory and Application of a Novel Optimal Robust Control: A Fuzzy Approach [J].
Zhang, Kuibang ;
Han, Jiang ;
Xia, Lian ;
Yang, Qingyan ;
Zhen, Shengchao .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2015, 17 (02) :181-192
[16]   Smooth optimal control with Floquet theory [J].
Bartels, Bjoern ;
Mintert, Florian .
PHYSICAL REVIEW A, 2013, 88 (05)
[17]   Adaptive control for downhole nuclear magnetic resonance excitation [J].
Shi, Guanghui ;
Xiao, Lizhi ;
Luo, Sihui ;
Liao, Guangzhi ;
Zhang, Yan ;
Zhang, Xiang ;
Zhong, Jian ;
Zhu, Wanli ;
Hou, Xueli .
SCIENTIFIC REPORTS, 2023, 13 (01)
[18]   Chaos suppression by feedback control in nuclear magnetic resonance [J].
Peng, Ling ;
Cai, Shuhui ;
Chen, Zhong .
PHYSICA B-CONDENSED MATTER, 2007, 396 (1-2) :57-61
[19]   Optimal control theory techniques for nitrogen vacancy ensembles in single crystal diamond [J].
Liddy, Madelaine S. Z. ;
Borneman, Troy ;
Sprenger, Peter ;
Cory, David .
QUANTUM INFORMATION PROCESSING, 2023, 22 (10)
[20]   Recent advances in nuclear magnetic resonance quantum information processing [J].
Criger, Ben ;
Passante, Gina ;
Park, Daniel ;
Laflamme, Raymond .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1976) :4620-4635