ON THE APPLICATION OF GEOMETRIC OPTIMAL CONTROL THEORY TO NUCLEAR MAGNETIC RESONANCE

被引:7
|
作者
Assemat, Elie [1 ]
Lapert, Marc [1 ]
Sugny, Dominique [1 ]
Glaser, Steffen J. [2 ]
机构
[1] Univ Bourgogne, CNRS, UMR 5209, Lab Interdisciplinaire Carnot Bourgogne ICB, F-21078 Dijon, France
[2] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany
关键词
Geometrical optimal control; Nuclear Magnetic Resonance; Pontryagin Maximum Principle; contrast problem; BROAD-BAND EXCITATION; IMAGING PROBLEM; SPIN DYNAMICS; PULSES; INVERSION; DESIGN; SPECTROSCOPY; TRAJECTORIES; SYSTEMS; LIMITS;
D O I
10.3934/mcrf.2013.3.375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some applications of geometric optimal control theory to control problems in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). Using the Pontryagin Maximum Principle (PMP), the optimal trajectories are found as solutions of a pseudo-Hamiltonian system. This computation can be completed by second-order optimality conditions based on the concept of conjugate points. After a brief physical introduction to NMR, this approach is applied to analyze two relevant optimal control issues in NMR and MRI: the control of a spin 1/2 particle in presence of radiation damping effect and the maximization of the contrast in MRI. The theoretical analysis is completed by numerical computations. This work has been made possible by the central and essential role of B. Bonnard, who has been at the heart of this project since 2009.
引用
收藏
页码:375 / 396
页数:22
相关论文
共 50 条
  • [1] A Review of Geometric Optimal Control for Quantum Systems in Nuclear Magnetic Resonance
    Bonnard, Bernard
    Glaser, Steffen J.
    Sugny, Dominique
    ADVANCES IN MATHEMATICAL PHYSICS, 2012, 2012
  • [2] Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance
    Bonnard, Bernard
    Cots, Olivier
    Glaser, Steffen J.
    Lapert, Marc
    Sugny, Dominique
    Zhang, Yun
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) : 1957 - 1969
  • [3] Optimal control of the inversion of two spins in Nuclear Magnetic Resonance
    Assemat, E.
    Attar, L.
    Penouilh, M. -J.
    Picquet, M.
    Tabard, A.
    Zhang, Y.
    Glaser, S. J.
    Sugny, D.
    CHEMICAL PHYSICS, 2012, 405 : 71 - 75
  • [4] Geometric quantum computation using nuclear magnetic resonance
    Jonathan A. Jones
    Vlatko Vedral
    Artur Ekert
    Giuseppe Castagnoli
    Nature, 2000, 403 : 869 - 871
  • [5] THEORY OF NUCLEAR MAGNETIC RESONANCE IN EU
    ELLIOTT, RJ
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1957, 70 (01): : 119 - 123
  • [6] ON THE THEORY OF NUCLEAR MAGNETIC RESONANCE IN POLYMERS
    MIYAKE, A
    JOURNAL OF POLYMER SCIENCE, 1958, 28 (117): : 476 - 480
  • [7] THEORY OF NUCLEAR MAGNETIC RESONANCE IN FERROMETALS
    BUISHVIL.LL
    GIORGADZ.NP
    KHARADZE, GA
    SOVIET PHYSICS SOLID STATE,USSR, 1966, 7 (09): : 2258 - +
  • [8] NUCLEAR MAGNETIC RESONANCE AND THE BCS THEORY
    Slichter, Charles P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (20-21): : 3787 - 3813
  • [9] Geometric quantum computation using nuclear magnetic resonance
    Jones, JA
    Vedral, V
    Ekert, A
    Castagnoli, G
    NATURE, 2000, 403 (6772) : 869 - 871
  • [10] Nuclear Magnetic Resonance and the BCS Theory
    Charles P. Slichter
    Journal of Superconductivity and Novel Magnetism, 2008, 21 : 329 - 333