Description of liquid-gas phase transition in the frame of continuum mechanics

被引:3
作者
Vilchevskaya, Elena N. [1 ,2 ]
Ivanova, Elena A. [1 ,2 ]
Altenbach, Holm [3 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] St Petersburg State Polytech Univ SPbSPU, Dept Theoret Mech, St Petersburg 195251, Russia
[3] Univ Magdeburg, Lehrstuhl Tech Mech, Inst Mech, Fak Maschinenbau, D-39106 Magdeburg, Germany
关键词
Liquid-gas phase transition; Cluster; Chemical potential; Source term; NUCLEATION; EQUATION; GROWTH; BUBBLE; ENERGY;
D O I
10.1007/s00161-013-0298-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
A new method of describing the liquid-gas phase transition is presented. It is assumed that the phase transition is characterized by a significant change of the particle density distribution as a result of energy supply at the boiling point that leads to structural changes but not to heating. Structural changes are described by an additional state characteristics of the system-the distribution density of the particles which is presented by an independent balance equation. The mathematical treatment is based on a special form of the internal energy and a source term in the particle balance equation. The presented method allows to model continua which have different specific heat capacities in liquid and in gas state.
引用
收藏
页码:221 / 245
页数:25
相关论文
共 50 条
  • [31] Effect of microchannel junction angle on two-phase liquid-gas Taylor flow
    Lim, An Eng
    Lim, Chun Yee
    Lam, Yee Cheong
    Lim, Yee Hwee
    CHEMICAL ENGINEERING SCIENCE, 2019, 202 : 417 - 428
  • [32] How much cooler would it be with some more neutrons? Exploring the asymmetry dependence of the nuclear caloric curve and the liquid-gas phase transition
    McIntosh, A. B.
    Mabiala, J.
    Bonasera, A.
    Cammarata, P.
    Hagel, K.
    Kohley, Z.
    Heilborn, L.
    May, L. W.
    Marini, P.
    Raphelt, A.
    Souliotis, G. A.
    Wuenschel, S.
    Zarrella, A.
    Zheng, H.
    Yennello, S. J.
    EUROPEAN PHYSICAL JOURNAL A, 2014, 50 (02) : 1 - 10
  • [33] AIRY POINT PROCESS AT THE LIQUID-GAS BOUNDARY
    Beffara, Vincent
    Chhita, Sunil
    Johansson, Kurt
    ANNALS OF PROBABILITY, 2018, 46 (05) : 2973 - 3013
  • [34] Morphology evolution of liquid-gas interface on submerged solid structured surfaces
    Huang, Shenglin
    Lv, Pengyu
    Duan, Huiling
    EXTREME MECHANICS LETTERS, 2019, 27 : 34 - 51
  • [35] A phase-field model for liquid-gas mixtures: mathematical modelling and discontinuous Galerkin discretization
    Repossi, Elisabetta
    Rosso, Riccardo
    Verani, Marco
    CALCOLO, 2017, 54 (04) : 1339 - 1377
  • [36] Unraveling dynamics: Analytical insights into liquid-gas interactions
    Khater, Mostafa M. A.
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [37] Thermodynamic consistency of liquid-gas lattice Boltzmann simulations
    Wagner, A. J.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [38] OSTWALD RIPENING OF BUBBLES IN LIQUID-GAS SOLUTIONS.
    Schmelzer, J.
    Schweitzer, F.
    Journal of Non-Equilibrium Thermodynamics, 1987, 12 (03): : 255 - 270
  • [39] Bench Tests and CFD Simulations of Liquid-Gas Phase Separation Modeling with Simultaneous Liquid Transport and Mechanical Foam Destruction
    Tomtas, Pawel
    Skwiot, Amadeusz
    Sobiecka, Elzbieta
    Obraniak, Andrzej
    Lawinska, Katarzyna
    Olejnik, Tomasz P.
    ENERGIES, 2021, 14 (06)
  • [40] Liquid-gas flow patterns in a narrow electrochemical channel
    Alexiadis, A.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, A.
    Wanngard, J.
    Bokkers, A.
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (10) : 2252 - 2260