共 50 条
High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative
被引:19
作者:
Zhang, Min
[1
,2
]
Liu, Yang
[2
]
Li, Hong
[2
]
机构:
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[2] Inner Mongolia Univ, Sch Math Sci, 235 West Daxue Rd, Hohhot 010021, Peoples R China
基金:
中国国家自然科学基金;
关键词:
a priori error analysis;
Caputo-Fabrizio fractional derivative;
fractal mobile;
immobile transport equation;
LDG method;
stability;
FINITE-ELEMENT-METHOD;
SPECTRAL COLLOCATION METHOD;
DIFFERENCE SCHEME;
NUMERICAL-METHOD;
DIFFUSION PROBLEM;
VOLUME METHOD;
APPROXIMATION;
CONVERGENCE;
D O I:
10.1002/num.22366
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this article, a local discontinuous Galerkin (LDG) method is studied for numerically solving the fractal mobile/immobile transport equation with a new time Caputo-Fabrizio fractional derivative. The stability of the LDG scheme is proven, and a priori error estimates with the second-order temporal convergence rate and the (k + 1)th order spatial convergence rate are derived in detail. Finally, numerical experiments based on P-k, k = 0, 1, 2, 3, elements are provided to verify our theoretical results.
引用
收藏
页码:1588 / 1612
页数:25
相关论文
共 50 条