The random graph embeds in the curve graph of any infinite genus surface

被引:0
作者
Bering, Edgar A. [1 ]
Gaster, Jonah [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St M-C 249, Chicago, IL 60607 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
来源
NEW YORK JOURNAL OF MATHEMATICS | 2017年 / 23卷
关键词
Random graph; curve graph; stability; GEOMETRY; COMPLEX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The random graph is an infinite graph with the universal property that any embedding of G-nu extends to an embedding of G, for any finite graph. In this paper we show that this graph embeds in the curve graph of a surface Sigma if and only if Sigma has infinite genus, showing that the curve system on an infinite genus surface is "as complicated as possible".
引用
收藏
页码:59 / 66
页数:8
相关论文
共 13 条
  • [1] INTERSECTION GRAPHS OF CURVES IN PLANE
    EHRLICH, G
    EVEN, S
    TARJAN, RE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 21 (01) : 8 - 20
  • [2] CURVE GRAPHS ON SURFACES OF INFINITE TYPE
    Fossas, Ariadna
    Parlier, Hugo
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 793 - 801
  • [3] HARVEY WJ, 1981, ANN MATH STUD, P245
  • [4] HERNANDEZ JESUS, 2014, PREPRINT
  • [5] Ivanov NV, 1997, INT MATH RES NOTICES, V1997, P651
  • [6] An Obstruction to Embedding Right-Angled Artin Groups in Mapping Class Groups
    Kim, Sang-Hyun
    Koberda, Thomas
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (14) : 3912 - 3918
  • [7] Margalit D., 2012, PRINCETON MATH SERIE, V49
  • [8] Geometry of the complex of curves I: Hyperbolicity
    Masur, HA
    Minsky, YN
    [J]. INVENTIONES MATHEMATICAE, 1999, 138 (01) : 103 - 149
  • [9] Geometry of the complex of curves II: Hierarchical structure
    Masur, HA
    Minsky, YN
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) : 902 - 974
  • [10] Rado R., 1964, Acta Arith., V9, P331