INTRINSIC VOLUMES OF RANDOM POLYTOPES WITH VERTICES ON THE BOUNDARY OF A CONVEX BODY

被引:0
作者
Boeroeczky, Karoly J. [1 ]
Fodor, Ferenc [2 ,3 ]
Hug, Daniel [4 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Univ Szeged, Dept Geometry, H-6720 Szeged, Hungary
[3] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[4] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
AFFINE SURFACE-AREA; ABSOLUTE CONTINUITY; CURVATURE MEASURES; MEAN WIDTH; BODIES; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a convex body in R-d, let j is an element of {1,..., d - 1}, and let rho be a positive and continuous probability density function with respect to the (d - 1)-dimensional Hausdorff measure on the boundary partial derivative K of K. Denote by K-n the convex hull of n points chosen randomly and independently from partial derivative K according to the probability distribution determined by rho. For the case when partial derivative K is a C-2 submanifold of R-d with everywhere positive Gauss curvature, M. Reitzner proved an asymptotic formula for the expectation of the difference of the jth intrinsic volumes of K and K-n, as n -> infinity. In this article, we extend this result to the case when the only condition on K is that a ball rolls freely in K.
引用
收藏
页码:785 / 809
页数:25
相关论文
共 21 条
[1]  
[Anonymous], AFFINE GEOMETRY CONV
[2]  
Artin E., 1964, GAMMA FUNCTION
[3]   CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES [J].
BARANY, I ;
LARMAN, DG .
MATHEMATIKA, 1988, 35 (70) :274-291
[4]   The Mean Width of Circumscribed Random Polytopes [J].
Boeroeczky, Karoly J. ;
Schneider, Rolf .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (04) :614-628
[5]   The mean width of random polytopes circumscribed around a convex body [J].
Boeroeczky, Karoly J. ;
Fodor, Ferenc ;
Hug, Daniel .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 :499-523
[6]   EXPECTATION OF INTRINSIC VOLUMES OF RANDOM POLYTOPES [J].
Boeroeczky, Karoly J., Jr. ;
Hoffmann, Lars Michael ;
Hug, Daniel .
PERIODICA MATHEMATICA HUNGARICA, 2008, 57 (02) :143-164
[7]  
Boroczky K, 2004, ANN APPL PROBAB, V14, P239
[8]  
Federer H., 1969, Geometric Measure Theory. Classics in Mathematics
[9]  
Gruber Peter M., 2007, FUNDAMENTAL PRINCIPL, V336
[10]   Contributions to affine surface area [J].
Hug, D .
MANUSCRIPTA MATHEMATICA, 1996, 91 (03) :283-301