Bipartite graphs with close domination and k-domination numbers

被引:4
作者
Ekinci, Gulnaz Boruzanli [1 ]
Bujtas, Csilla [2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
domination number; k-domination number; hereditary property; vertex-edge cover; TC-number; computational complexity; TRANSVERSAL NUMBERS; EQUAL DOMINATION; 2-DOMINATION; BOUNDS;
D O I
10.1515/math-2020-0047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer and let G be a graph with vertex set V(G). A subset D subset of V(G) is a k-dominating set if every vertex outside D is adjacent to at least k vertices in D. The k-domination number gamma(k)(G) is the minimum cardinality of a k-dominating set in G. For any graph G, we know that gamma(k)(G) >= gamma(G) + k - 2 where Delta(G) >= k >= 2 and this bound is sharp for every k >= 2. In this paper, we characterize bipartite graphs satisfying the equality for k >= 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k = 3. We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 24 条
[11]  
Favaron O., 1988, ARS COMBINATORIA, P159
[12]   On k-domination and minimum degree in graphs [J].
Favaron, Odile ;
Hansberg, Adriana ;
Volkmann, Lutz .
JOURNAL OF GRAPH THEORY, 2008, 57 (01) :33-40
[13]  
Fink J.F., 1985, Graph Theory with Applications to Algorithms and Computer Science, P301
[14]  
Fink J.F., 1985, Graph Theory with Applications to Algorithms and Computer Science, P282
[15]   On graphs with equal domination and 2-domination numbers [J].
Hansberg, Adriana ;
Volkmann, Lutz .
DISCRETE MATHEMATICS, 2008, 308 (11) :2277-2281
[16]   Claw-Free Graphs with Equal 2-Domination and Domination Numbers [J].
Hansberg, Adriana ;
Randerath, Bert ;
Volkmann, Lutz .
FILOMAT, 2016, 30 (10) :2795-2801
[17]  
Hansberg A, 2015, UTILITAS MATHEMATICA, V98, P65
[18]   On k-domination and j-independence in graphs [J].
Hansberg, Adriana ;
Pepper, Ryan .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) :1472-1480
[19]  
HARTNELL B, 1995, CZECH MATH J, V45, P221
[20]  
Haynes T. W, 2013, Fundamentals of Domination in Graphs