Bipartite graphs with close domination and k-domination numbers

被引:4
作者
Ekinci, Gulnaz Boruzanli [1 ]
Bujtas, Csilla [2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
domination number; k-domination number; hereditary property; vertex-edge cover; TC-number; computational complexity; TRANSVERSAL NUMBERS; EQUAL DOMINATION; 2-DOMINATION; BOUNDS;
D O I
10.1515/math-2020-0047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer and let G be a graph with vertex set V(G). A subset D subset of V(G) is a k-dominating set if every vertex outside D is adjacent to at least k vertices in D. The k-domination number gamma(k)(G) is the minimum cardinality of a k-dominating set in G. For any graph G, we know that gamma(k)(G) >= gamma(G) + k - 2 where Delta(G) >= k >= 2 and this bound is sharp for every k >= 2. In this paper, we characterize bipartite graphs satisfying the equality for k >= 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k = 3. We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1979, Computers and Intractibility: A Guide to the Theory of NP-Completeness
[2]   Equality of domination and transversal numbers in hypergraphs [J].
Arumugam, S. ;
Jose, Bibin K. ;
Bujtas, Csilla ;
Tuza, Zsolt .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) :1859-1867
[3]   Characterizations of trees with equal paired and double domination numbers [J].
Blidia, Mostafa ;
Chellali, Mustapha ;
Haynes, Teresa W. .
DISCRETE MATHEMATICS, 2006, 306 (16) :1840-1845
[4]  
Brause C, 2017, DISCRETE MATH THEOR, V19
[5]   Bounds on the 2-domination number [J].
Bujtas, Csilla ;
Jasko, Szilard .
DISCRETE APPLIED MATHEMATICS, 2018, 242 :4-15
[6]  
CARO Y, 1990, ARS COMBINATORIA, V29C, P49
[7]  
Caro Y, 1990, Int. J. Math. Sci., V13, P205, DOI 10.1155S016117129000031X////
[8]   k-Domination and k-Independence in Graphs: A Survey [J].
Chellali, Mustapha ;
Favaron, Odile ;
Hansberg, Adriana ;
Volkmann, Lutz .
GRAPHS AND COMBINATORICS, 2012, 28 (01) :1-55
[9]   SOME VARIATIONS OF PERFECT GRAPHS [J].
Dettlaff, Magda ;
Lemanska, Magdalena ;
Semanisin, Gabriel ;
Zuazua, Rita .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (03) :661-668
[10]  
Ekinci Gulnaz Boruzanli, 2019, ARXIV190707866