Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic

被引:4
|
作者
Busaniche, Manuela [1 ]
Cordero, Penelope [2 ]
Oscar Rodriguez, Ricardo [3 ]
机构
[1] UNL, CONICET, FIQ, IMAL, Santa Fe, NM, Argentina
[2] UNL, CONICET, IMAL, Santa Fe, NM, Argentina
[3] UBA, CONICET, FCEyN, ICC,UAB DC, Buenos Aires, DF, Argentina
基金
欧盟地平线“2020”;
关键词
Modal algebras; Fuzzy possibilistic logic; BL-algebras;
D O I
10.1007/s00500-019-03810-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy possibilistic logic is an important formalism for approximate reasoning. It extends the well-known basic propositional logic BL, introduced by Hajek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consider an algebraic approach to study this logic, introducing Pseudomonadic BL-algebras. These algebras turn to be a generalization of both Pseudomonadic algebras introduced by Bezhanishvili (Math Log Q 48:624-636, 2002) and serial, Euclidean and transitive Bimodal Godel algebras proposed by Caicedo and Rodriguez (J Log Comput 25:37-55, 2015). We present the connection between this class of algebras and possibilistic BL-frames, as a first step to solve an open problem proposed by Hajek (Metamathematics of fuzzy logic. Trends in logic, Kluwer, Dordrecht, 1998, Chap. 8, Sect. 3).
引用
收藏
页码:2199 / 2212
页数:14
相关论文
共 36 条
  • [1] Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic
    Manuela Busaniche
    Penélope Cordero
    Ricardo Oscar Rodriguez
    Soft Computing, 2019, 23 : 2199 - 2212
  • [2] Monadic BL-algebras: The equivalent algebraic semantics of Hajek's monadic fuzzy logic
    Castano, Diego
    Cimadamore, Cecilia
    Diaz Varela, Jose Patricio
    Rueda, Laura
    FUZZY SETS AND SYSTEMS, 2017, 320 : 40 - 59
  • [3] Canonicity in subvarieties of BL-algebras
    Manuela Busaniche
    Leonardo Manuel Cabrer
    Algebra universalis, 2009, 62 : 375 - 397
  • [4] Varieties of BL-Algebras II
    Agliano, P.
    Montagna, F.
    STUDIA LOGICA, 2018, 106 (04) : 721 - 737
  • [5] Compact representations of BL-algebras
    Di Nola, A
    Leustean, L
    ARCHIVE FOR MATHEMATICAL LOGIC, 2003, 42 (08) : 737 - 761
  • [6] Completions in Subvarieties of BL-algebras
    Busaniche, Manuela
    Manuel Cabrer, Leonardo
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 19 (1-3) : 41 - 50
  • [7] Baer extensions of BL-algebras
    Leustean, Laurentiu
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2006, 12 (3-4) : 321 - 336
  • [8] Poset product and BL-algebras
    Busaniche, Manuela
    Gomez, Conrado
    FUZZY SETS AND SYSTEMS, 2020, 397 : 123 - 139
  • [9] Canonicity in subvarieties of BL-algebras
    Busaniche, Manuela
    Cabrer, Leonardo Manuel
    ALGEBRA UNIVERSALIS, 2009, 62 (04) : 375 - 397
  • [10] Varieties of BL-Algebras II
    P. Aglianò
    F. Montagna
    Studia Logica, 2018, 106 : 721 - 737