Global-in-time strong solvability of the multi-dimensional one-phase Stefan problem for an incompressible viscous fluid

被引:1
作者
Kusaka, Yoshiaki [1 ]
机构
[1] Tamagawa Univ, Fac Engn, Dept Math, Machida, Tokyo 1948610, Japan
关键词
Stefan problem; incompressible viscous fluid; Lagrangian coordinates; Global-in-time strong solvability; FRONT-TRACKING METHOD; CLASSICAL SOLVABILITY; FLOW;
D O I
10.1007/s13160-013-0108-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider the multi-dimensional one-phase Stefan problem describing the process of phase transition in an incompressible viscous fluid. The model is described as a free boundary problem consisting of the heat equation with a transport term and the Navier-Stokes equations. We prove the existence of a global-in-time strong solution with small data by introducing Lagrangian coordinates.
引用
收藏
页码:415 / 439
页数:25
相关论文
共 21 条
[1]  
[Anonymous], 2001, ELEMENTARY FUNCTIONA
[2]  
[Anonymous], MATH USSR SB
[3]  
Bui A. T., 1990, REND ACCAD NAZ SC 40, V14, P163
[4]  
Cannon J. R., 1983, COMMUN PART DIFF EQ, V14, P1549
[5]  
Fukao T., 2005, ADV MATH SCI APPL, V15, P29
[6]  
GALDI GP, 1994, LINEARIZED STEADY PR, V1
[7]   CLASSICAL-SOLUTIONS OF THE STEFAN PROBLEM [J].
HANZAWA, EI .
TOHOKU MATHEMATICAL JOURNAL, 1981, 33 (03) :297-335
[8]   A Lagrangian particle level set method [J].
Hieber, SE ;
Koumoutsakos, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 210 (01) :342-367
[9]  
HOFFMANN KH, 1998, ADV MATH SCI APPL, V8, P173
[10]   On the classical solvability of the Stefan problem in a viscous incompressible fluid flow [J].
Kusaka, Y ;
Tani, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (03) :584-602