Convergence comparison and stability of Jungck-Kirk-type algorithms for common fixed point problems

被引:13
作者
Alotaibi, Abdullah [1 ]
Kumar, Vivek [2 ]
Hussain, Nawab [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[2] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
来源
FIXED POINT THEORY AND APPLICATIONS | 2013年
关键词
Jungck-type iterative schemes; Kirk-type iterative schemes; quasi-contractive operators; goat problem; BANACH-SPACES; ITERATION METHOD; MAPPINGS; APPROXIMATION; SCHEME;
D O I
10.1186/1687-1812-2013-173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to introduce new hybrid iterative schemes, namely Jungck-Kirk-SP and Jungck-Kirk-CR iterative schemes, and prove convergence and stability results for these iterative schemes using certain quasi-contractive operators. Numerical examples showing the comparison of convergence rate and applications of newly introduced iterative schemes are also provided. The obtained results improve, generalize and extend the works of Olatinwo (Acta Math. Univ. Comen. LXXVII(2):299-304, 2008; Fasc. Math. 40:37-43, 2008; Mat. Vesn. 61(4):247-256, 2009; Acta Math. Acad. Paedagog. Nyhazi. 25(1):105-118, 2009; Acta Univ. Apulensis 26:225-236, 2011), Chugh and Kumar (Int. J. Contemp. Math. Sci. 7(24):1165-1184, 2012; Int. J. Comput. Appl. 36(12):40-46, 2011), Bosede (Bull. Math. Anal. Appl. 2(3):65-73, 2010), Oleleru and Akewe (Fasc. Math. 47:47-61, 2011) and many others in the literature.
引用
收藏
页数:30
相关论文
共 34 条
[21]  
Olaleru JO, 2011, FASC MATH, V47, P47
[22]  
Olatinwo MO, 2009, MAT VESTN, V61, P247
[23]  
Olatinwo MO, 2008, ACTA MATH UNIV COMEN, V77, P299
[24]  
Olatinwo MO, 2009, ACTA MATH ACAD PAEDA, V25, P105
[25]  
Olatinwo MO, 2011, ACTA U APULENSIS, V26, P225
[26]   On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval [J].
Phuengrattana, Withun ;
Suantai, Suthep .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) :3006-3014
[27]  
Prasad B., 2011, INT J MATH ANAL, V5, P1237
[28]   Comments on the rate of convergence between Mann and Ishikawa iterations applied to Zamfirescu operators [J].
Qing, Yuan ;
Rhoades, B. E. .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[29]  
Ranganathan S, MATH SEMIN NOTES KOB, V6, P351
[30]   2 FIXED-POINT ITERATION METHODS [J].
RHOADES, BE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 56 (03) :741-750