Semantic R-CNN for Natural Language Object Detection

被引:0
|
作者
Ye, Shuxiong [1 ]
Qin, Zheng [1 ]
Xu, Kaiping [1 ]
Huang, Kai [1 ]
Wang, Guolong [1 ]
机构
[1] Tsinghua Univ, Sch Software, Beijing, Peoples R China
来源
ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II | 2018年 / 10736卷
关键词
Object detection; Natural language; RPN;
D O I
10.1007/978-3-319-77383-4_10
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a simple and effective framework for natural language object detection, to localize a target within an image based on description of the target. The method, called semantic R-CNN, extends RPN (Region Proposal Network) [1] by adding LSTM [20] module for processing natural language query text. LSTM [20] module take encoded query text and image descriptors as input and output the probability of the query text conditioned on visual features of candidate box and whole image. Those candidate boxes are generated by RPN and their local features are extracted by ROI pooling. RPN can be initialized from pre-trained Faster R-CNN model [1], transfers object visual knowledge from traditional object detection domain to our task. Experimental results demonstrate that our method significantly outperform previous baseline SCRC (Spatial Context Recurrent ConvNet) [7] model on Referit dataset [8], moreover, our model is simple to train similar to Faster R-CNN.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 50 条
  • [1] ME R-CNN: Multi-Expert R-CNN for Object Detection
    Lee, Hyungtae
    Eum, Sungmin
    Kwon, Heesung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 1030 - 1044
  • [2] Joint Semantic Segmentation and Object Detection Based on Relational Mask R-CNN
    Zhang, Yanni
    Xu, Hui
    Fan, Jingxuan
    Qi, Miao
    Liu, Tao
    Wang, Jianzhong
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 506 - 521
  • [3] Street Object Detection Based on Faster R-CNN
    Cai, Wendi
    Li, Jiadie
    Xie, Zhongzhao
    Zhao, Tao
    Lu, Kang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9500 - 9503
  • [4] Study Of Object Detection Based On Faster R-CNN
    Liu, Bin
    Zhao, Wencang
    Sun, Qiaoqiao
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6233 - 6236
  • [5] Object detection based on RGC mask R-CNN
    Wu, Minghu
    Yue, Hanhui
    Wang, Juan
    Huang, Yongxi
    Liu, Min
    Jiang, Yuhan
    Ke, Cong
    Zeng, Cheng
    IET IMAGE PROCESSING, 2020, 14 (08) : 1502 - 1508
  • [6] Feature Enhanced Faster R-CNN for Object Detection
    Jiang, Jun
    Hu, Zhongbing
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [7] Comparison of faster R-CNN models for object detection
    Lee, Chungkeun
    Kim, H. Jin
    Oh, Kyeong Won
    2016 16TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2016, : 107 - 110
  • [8] FE R-CNN: Feature Enhance R-CNN for Few-Shot Ship Object Detection
    Yuan, Ming
    Meng, Hao
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 567 - 572
  • [9] Ganster R-CNN: Occluded Object Detection Network Based on Generative Adversarial Nets and Faster R-CNN
    Sun, Kelei
    Wen, Qiufen
    Zhou, Huaping
    IEEE ACCESS, 2022, 10 : 105022 - 105030
  • [10] BFF R-CNN: Balanced Feature Fusion for Object Detection
    Liu, Hongzhe
    Wang, Ningwei
    Li, Xuewei
    Xu, Cheng
    Li, Yaze
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1472 - 1480