Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition

被引:45
作者
Chen, Ruei-San [1 ]
Wang, Wen-Chun [2 ]
Chan, Ching-Hsiang [2 ]
Hsu, Hung-Pin [3 ]
Tien, Li-Chia [4 ]
Chen, Yu-Jyun [4 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Taipei 10607, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei 10607, Taiwan
[3] Ming Chi Univ Technol, Dept Elect Engn, Taipei 243, Taiwan
[4] Natl Dong Hwa Univ, Dept Mat Sci & Engn, Shoufeng 974, Hualien, Taiwan
来源
NANOSCALE RESEARCH LETTERS | 2013年 / 8卷
关键词
Vanadium pentoxide; Nanowire; Photoconductivity; Physical vapor deposition; Normalized gain; VANADIUM PENTOXIDE; FIELD-EMISSION; QUANTUM EFFICIENCY; CATHODE MATERIAL; SURFACE; GAN; PHOTODETECTORS; PHOTORESPONSE; NANOBELTS; DEVICES;
D O I
10.1186/1556-276X-8-443
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photoconductivities of monocrystalline vanadium pentoxide (V2O5) nanowires (NWs) with layered orthorhombic structure grown by physical vapor deposition (PVD) have been investigated from the points of view of device and material. Optimal responsivity and gain for single-NW photodetector are at 7,900 A W-1 and 30,000, respectively. Intrinsic photoconduction (PC) efficiency (i.e., normalized gain) of the PVD-grown V2O5 NWs is two orders of magnitude higher than that of the V2O5 counterpart prepared by hydrothermal approach. In addition, bulk and surface-controlled PC mechanisms have been observed respectively by above- and below-bandgap excitations. The coexistence of hole trapping and oxygen sensitization effects in this layered V2O5 nanostructure is proposed, which is different from conventional metal oxide systems, such as ZnO, SnO2, TiO2, and WO3.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
[1]   VIBRATIONAL-SPECTRA AND VALENCE FORCE-FIELD OF CRYSTALLINE V2O5 [J].
ABELLO, L ;
HUSSON, E ;
REPELIN, Y ;
LUCAZEAU, G .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1983, 39 (07) :641-651
[2]   A review of the growth of V2O5 films from 1885 to 2010 [J].
Beke, Szabolcs .
THIN SOLID FILMS, 2011, 519 (06) :1761-1771
[3]  
Bhattacharya P., 1997, SEMICONDUCTOR OPTOEL, P346
[4]   Mechanisms of recombination in GaN photodetectors [J].
Binet, F ;
Duboz, JY ;
Rosencher, E ;
Scholz, F ;
Harle, V .
APPLIED PHYSICS LETTERS, 1996, 69 (09) :1202-1204
[5]  
Bube R.H., 1960, Photoconductivity of Solids
[6]   ZnO Hollow-Sphere Nanofilm-Based High-Performance and Low-Cost Photodetector [J].
Chen, Min ;
Hu, Linfeng ;
Xu, Jiaxi ;
Liao, Meiyong ;
Wu, Limin ;
Fang, Xiaosheng .
SMALL, 2011, 7 (17) :2449-2453
[7]   Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires [J].
Chen, R. S. ;
Wang, W. C. ;
Lu, M. L. ;
Chen, Y. F. ;
Lin, H. C. ;
Chen, K. H. ;
Chen, L. C. .
NANOSCALE, 2013, 5 (15) :6867-6873
[8]   Photoconduction Properties in Single-Crystalline Titanium Dioxide Nanorods with Ultrahigh Normalized Gain [J].
Chen, R. S. ;
Chen, C. A. ;
Tsai, H. Y. ;
Wang, W. C. ;
Huang, Y. S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (06) :4267-4272
[9]   Photoconduction mechanism of oxygen sensitization in InN nanowires [J].
Chen, R. S. ;
Yang, T. H. ;
Chen, H. Y. ;
Chen, L. C. ;
Chen, K. H. ;
Yang, Y. J. ;
Su, C. H. ;
Lin, C. R. .
NANOTECHNOLOGY, 2011, 22 (42)
[10]   On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity [J].
Chen, Reui-San ;
Wang, Shiao-Wen ;
Lan, Zon-Huang ;
Tsai, Jeff Tsung-Hui ;
Wu, Chien-Ting ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien ;
Huang, Ying-Sheng ;
Chen, Chia-Chun .
SMALL, 2008, 4 (07) :925-929