The proof of Ushio's conjecture concerning path factorization of complete bipartite graphs

被引:8
作者
Du, BL [1 ]
Wang, J
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Nantong Vocat Coll, Nantong 226007, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2006年 / 49卷 / 03期
关键词
complete bipartite graph; factorization; Ushio Conjecture;
D O I
10.1007/s11425-006-0289-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K-m,K-n be a complete bipartite graph with two partite sets having and n vertices, respectively. A P-upsilon-factorization of K-m,K-n is a set of edge-disjoint P-upsilon-factors of K-m,K-n which partition the set of edges of K-m,K-n. When upsilon is an even number, Wang and Ushio gave a necessary and sufficient condition for existence of P-upsilon-factorization of K-m,K-n. When k is an odd number, Ushio in 1993 proposed a conjecture. Very recently, we have proved that Ushio's conjecture is true when upsilon = 4k-1. In this paper we shall show that Ushio Conjecture is true when v = 4k+1, and then Ushio's conjecture is true. That is, we will prove that a necessary and sufficient condition for the existence of a P4k+1-factorization of K-m,K-n is (i) 2km <= (2k+1)n, (ii) 2kn <= (2k+1)m, (iii) m+n equivalent to 0 (mod 4k+1), (iv) (4k+1)mn/[4k(m+n)] is an integer.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 12 条
[1]  
Bondy J.A., 2008, GRAD TEXTS MATH
[2]   K1,p(2)-factorization of complete bipartite graphs [J].
Du, B .
DISCRETE MATHEMATICS, 1998, 187 (1-3) :273-279
[3]   P4k-1-factorization of complete bipartite graphs [J].
Du, BL ;
Wang, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (04) :539-547
[4]   Kp,q-factorization of complete bipartite graphs [J].
Du, BL ;
Wang, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (03) :473-479
[5]   K1,k-factorization of complete bipartite graphs [J].
Du, BL ;
Wang, J .
DISCRETE MATHEMATICS, 2002, 259 (1-3) :301-306
[6]  
DU BL, 2000, AUSTR J COMBIN, V21, P197
[7]   Complete bipartite factorisations by complete bipartite graphs [J].
Martin, N .
DISCRETE MATHEMATICS, 1997, 167 :461-480
[8]   G-DESIGNS AND RELATED DESIGNS [J].
USHIO, K .
DISCRETE MATHEMATICS, 1993, 116 (1-3) :299-311
[9]   P3-FACTORIZATION OF COMPLETE BIPARTITE GRAPHS [J].
USHIO, K .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :361-366
[10]   P(2P)-FACTORIZATION OF A COMPLETE BIPARTITE GRAPH [J].
WANG, H .
DISCRETE MATHEMATICS, 1993, 120 (1-3) :307-308