Schwarz's Lemma for Slice Clifford Analysis

被引:7
作者
Ren, Guangbin [1 ]
Xu, Zhenghua [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
Slice monogenic function; Maximum modulus principle; Schwarz lemma; Burns-Krantz theorem; REGULAR FUNCTIONS; FUNCTIONAL-CALCULUS; MONOGENIC FUNCTIONS; FORMULA;
D O I
10.1007/s00006-015-0534-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the Schwarz lemma in Clifford analysis does not hold at least in the original form. In this article we find that the situation in slice Clifford analysis is totally different. The sharp Schwarz lemma in slice Clifford analysis holds true in the original form, as well as the Cartan theorem, the Hopf lemma, and the Burns-Krantz theorem. The point of these theorems in slice Clifford analysis is that the results hold for such a map f : Rm+1 -> R-0,R-m that is not a self map for any m >= 2.
引用
收藏
页码:965 / 976
页数:12
相关论文
共 22 条
[1]  
Abate M., 1989, Iteration Theory of Holomorphic Maps on Taut Manifolds. Research and Lecture Notes in Mathematics. Complex Analysis and Geometry
[2]  
[Anonymous], 1979, COMPLEX ANAL
[3]  
Burns D M., 1994, J AM MATH SOC, V7, P661, DOI [10.1090/S0894-0347-1994-1242454-2, DOI 10.1090/S0894-0347-1994-1242454-2]
[4]  
Colombo F, 2011, PROG MATH, V289, P1, DOI 10.1007/978-3-0348-0110-2
[5]   The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators [J].
Colombo, Fabrizio ;
Sabadini, Irene .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :655-679
[6]   Duality theorems for slice hyperholomorphic functions [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 :85-104
[7]   An extension theorem for slice monogenic functions and some of its consequences [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) :369-389
[8]   Slice monogenic functions [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) :385-403
[9]  
Colombo F, 2009, TRENDS MATH, P101
[10]   A new approach to Cullen-regular functions of a quaternionic variable [J].
Gentili, G ;
Struppa, DC .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (10) :741-744