LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS

被引:132
作者
Deng, W. H. [1 ,2 ]
Hesthaven, J. S. [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2013年 / 47卷 / 06期
基金
美国国家科学基金会;
关键词
Fractional derivatives; local discontinuous Galerkin methods; stability; convergence; error estimates; FOKKER-PLANCK EQUATION; FINITE-ELEMENT-METHOD; SPACE;
D O I
10.1051/m2an/2013091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by beta is an element of [1, 2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence O(h(k+1)) uniformly across the continuous range between pure advection (beta = 1) and pure diffusion (beta = 2). In the two classic limits, known schemes are recovered. We discuss stability and present an error analysis for the space semi-discretized scheme, which is supported through a few examples.
引用
收藏
页码:1845 / 1864
页数:20
相关论文
共 24 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[3]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[4]  
BUTZER P., 2000, INTRO FRACTIONAL CAL
[5]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[6]   A Fourier method for the fractional diffusion equation describing sub-diffusion [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :886-897
[7]  
Ciarlet P, 1975, FINITE ELEMENT METHO
[8]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[9]   Numerical algorithm for the time fractional Fokker-Planck equation [J].
Deng, Weihua .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :1510-1522
[10]   FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION [J].
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :204-226