LLE based gait recognition

被引:0
作者
Li, HG [1 ]
Shi, CP [1 ]
Li, XG [1 ]
机构
[1] Yangzhou Univ, Phys Coll, Dept Elect, Yangzhou 225002, Peoples R China
来源
PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9 | 2005年
关键词
locally linear embedding; gait recognition; biometrics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
LLE based human gait recognition method is proposed. LLE representation is based on the similarity of images and is inherent translation, rotation and scale invariant, so LLE representation of gait sequences can be viewed as a kind of dynamic features of gait. 1d LLE representation based gait cycle detection method gives complete gait cycle and is invariant to visual angle, therefore it is better than classical silhouette width or silhouette area based methods. Dimensionality of LLE representation is related to the DOF of gait and 10d LLE representation of simple gait is sufficient for gait recognition. The recognition rate is 100% on CMU MOBO database. If static features are combined with dynamic features, perfect recognition rate will be achieved.
引用
收藏
页码:4516 / 4521
页数:6
相关论文
共 21 条
  • [1] Silhouette-based human identification from body shape and gait
    Collins, RT
    Gross, R
    Shi, JB
    [J]. FIFTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2002, : 366 - 371
  • [2] de Ridder D, 2003, LECT NOTES COMPUT SC, V2714, P333
  • [3] Gross R., 2001, Cmu-Ri-Tr-01-18, P1
  • [4] KOUROPTEVA O, 2002, MVG012002 U OUL INF
  • [5] Li HG, 2004, LECT NOTES COMPUT SC, V3338, P671
  • [6] Effect of silhouette quality on hard problems in gait recognition
    Liu, ZY
    Sarkar, S
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (02): : 170 - 183
  • [7] Nonlinear dimensionality reduction by locally linear embedding
    Roweis, ST
    Saul, LK
    [J]. SCIENCE, 2000, 290 (5500) : 2323 - +
  • [8] SAITO Y, 1999, P INT C IM PROC, V4, P197
  • [9] The HumanID gait challenge problem: Data sets, performance, and analysis
    Sarkar, S
    Phillips, PJ
    Liu, ZY
    Vega, IR
    Grother, P
    Bowyer, KW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (02) : 162 - 177
  • [10] SAUL LK, 2003, CIS0218 MS U PENNS