Mathematical Modelling for Patient Selection in Proton Therapy

被引:13
作者
Mee, T. [1 ,2 ,3 ]
Kirkby, N. F. [1 ,2 ,3 ]
Kirkby, K. J. [1 ,2 ,3 ]
机构
[1] Univ Manchester, Fac Biol Med & Hlth, Sch Med Sci, Div Canc Sci, Manchester, Lancs, England
[2] Christie NHS Fdn Trust, Manchester, Lancs, England
[3] Univ Manchester, Manchester Acad Hlth Sci Ctr, NIHR Manchester Biomed Res Ctr, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Discrete event simulation; mathematical modelling; NTCP; patient selection; proton therapy; DISCRETE-EVENT SIMULATION; TUBE-FEEDING DEPENDENCE; COST-EFFECTIVENESS; NORMAL TISSUE; RADIOTHERAPY UTILIZATION; PARTICLE RADIOTHERAPY; CLINICAL-OUTCOMES; RADIATION-THERAPY; MODALITY THERAPY; MALTHUS PROGRAM;
D O I
10.1016/j.clon.2018.01.007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Proton beam therapy (PBT) is still relatively new in cancer treatment and the clinical evidence base is relatively sparse. Mathematical modelling offers assistance when selecting patients for PBT and predicting the demand for service. Discrete event simulation, normal tissue complication probability, quality- adjusted life-years and Markov Chain models are all mathematical and statistical modelling techniques currently used but none is dominant. As new evidence and outcome data become available from PBT, comprehensive models will emerge that are less dependent on the specific technologies of radiotherapy planning and delivery. (C) 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 50 条
  • [41] The Evolution of Percutaneous Mitral Valve Repair Therapy Lessons Learned and Implications for Patient Selection
    Beigel, Roy
    Wunderlich, Nina C.
    Kar, Saibal
    Siegel, Robert J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (24) : 2688 - 2700
  • [42] How proton therapy fits into the management of adult intracranial tumors
    Kotecha, Rupesh
    La Rosa, Alonso
    Mehta, Minesh P.
    NEURO-ONCOLOGY, 2024, 26 : S26 - S45
  • [43] Proton Therapy in Non-small Cell Lung Cancer
    Mesko, Shane
    Gomez, Daniel
    CURRENT TREATMENT OPTIONS IN ONCOLOGY, 2018, 19 (12)
  • [44] MATHEMATICAL MODELLING OF NANOSTRUCTURES
    Baowan, Duangkamon
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 78 (02) : 351 - 352
  • [45] Mathematical Modelling of Angiogenesis
    Mark A.J. Chaplain
    Journal of Neuro-Oncology, 2000, 50 : 37 - 51
  • [46] Mathematical modelling of angiogenesis
    Chaplain, MAJ
    JOURNAL OF NEURO-ONCOLOGY, 2000, 50 (1-2) : 37 - 51
  • [47] The Use of Mathematical Modelling for Improving the Tissue Engineering of Organs and Stem Cell Therapy
    Lemon, Greg
    Sjoqvist, Sebastian
    Lim, Mei Ling
    Feliu, Neus
    Firsova, Alexandra B.
    Amin, Risul
    Gustafsson, Ylva
    Stuewer, Annika
    Haag, Johannes
    Jungebluth, Philipp
    Macchiarini, Paolo
    CURRENT STEM CELL RESEARCH & THERAPY, 2016, 11 (08) : 666 - 675
  • [48] On the mathematical modelling of pain
    Britton, NF
    Skevington, SM
    NEUROCHEMICAL RESEARCH, 1996, 21 (09) : 1133 - 1140
  • [49] Model-Based Selection for Proton Therapy in Breast Cancer: Development of the National Indication Protocol for Proton Therapy and First Clinical Experiences
    Boersma, L. J.
    Sattler, M. G. A.
    Maduro, J. H.
    Bijker, N.
    Essers, M.
    van Gestel, C. M. J.
    Klaver, Y. L. B.
    Petoukhova, A. L.
    Rodrigues, M. F.
    Russell, N. S.
    van der Schaaf, A.
    Verhoeven, K.
    van Vulpen, M.
    Schuit, E.
    Langendijk, J. A.
    CLINICAL ONCOLOGY, 2022, 34 (04) : 247 - 257
  • [50] Proton therapy in France in 2019
    Dendale, R.
    Thariat, J.
    Doyen, J.
    Balosso, J.
    Stefan, D.
    Bolle, S.
    Feuvret, L.
    Poortmans, P.
    Hannoun-Levi, J. -M.
    Bondiau, P. -Y.
    Micaud, M.
    Alapetite, C.
    Calugaru, V.
    Habrand, J. -L.
    Mahe, M. -A.
    CANCER RADIOTHERAPIE, 2019, 23 (6-7): : 617 - 624