Sequentially generalized Cohen-Macaulayness of bigraded modules

被引:2
作者
Noormohammadi, Hassan [1 ]
Rahimi, Ahad [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Razi Univ, Dept Math, Kermanshah, Iran
关键词
Sequentially generalized Cohen Macaulay; cohomological dimension; monomial ideal; Castelnuovo-Mumford regularity; LOCAL COHOMOLOGY;
D O I
10.1142/S0219498816500171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S = K[x(1),..., x(m), y(1),..., y(n)] be the standard bigraded polynomial ring over a field K, and M a finitely generated bigraded S-module. In this paper we study the generalized Cohen-Macaulayness and sequentially generalized Cohen-Macaulayness of M with respect to Q = (y(1),..., y(n)). We prove that if I subset of S be a monomial ideal with cd(Q, S/I) <= 2, then S/I is sequentially generalized Cohen-Macaulay with respect to Q.
引用
收藏
页数:14
相关论文
共 17 条
[11]   On toric face rings [J].
Ichim, Bogdan ;
Roemer, Tim .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (01) :249-266
[12]   RELATIVE COHEN-MACAULAYNESS AND RELATIVE UNMIXEDNESS OF BIGRADED MODULES [J].
Jahangiri, Maryam ;
Rahimi, Ahad .
JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (04) :551-575
[13]   On the regularity of local cohomology of bigraded algebras [J].
Rahimi, A .
JOURNAL OF ALGEBRA, 2006, 302 (01) :313-339
[14]  
Rahimi A., 2011, ARXIV11123717
[15]  
Rahimi A., CZECH MATH IN PRESS
[16]   Relative Cohen-Macaulayness of bigraded modules [J].
Rahimi, Ahad .
JOURNAL OF ALGEBRA, 2010, 323 (06) :1745-1757
[17]  
Schenzel P, 1999, LECT NOTES PURE APPL, V206, P245