Sequentially generalized Cohen-Macaulayness of bigraded modules

被引:2
作者
Noormohammadi, Hassan [1 ]
Rahimi, Ahad [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Razi Univ, Dept Math, Kermanshah, Iran
关键词
Sequentially generalized Cohen Macaulay; cohomological dimension; monomial ideal; Castelnuovo-Mumford regularity; LOCAL COHOMOLOGY;
D O I
10.1142/S0219498816500171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S = K[x(1),..., x(m), y(1),..., y(n)] be the standard bigraded polynomial ring over a field K, and M a finitely generated bigraded S-module. In this paper we study the generalized Cohen-Macaulayness and sequentially generalized Cohen-Macaulayness of M with respect to Q = (y(1),..., y(n)). We prove that if I subset of S be a monomial ideal with cd(Q, S/I) <= 2, then S/I is sequentially generalized Cohen-Macaulay with respect to Q.
引用
收藏
页数:14
相关论文
共 17 条
  • [1] RELATIVE BUCHSBAUMNESS OF BIGRADED MODULES
    Borna, Keivan
    Rahimi, Ahad
    Rasoulyar, Syrous
    [J]. COLLOQUIUM MATHEMATICUM, 2012, 127 (02) : 161 - 172
  • [2] Brodmann M.P., 2013, Local Cohomology: An algebraic introduction with geometric applications, volume 60 of Cambridge Studies in Advanced Mathematics, V60
  • [3] Bruns W, 1998, COHEN MACAULAY RINGS, V39
  • [4] THE EVENTUAL STABILITY OF DEPTH, ASSOCIATED PRIMES AND COHOMOLOGY OF A GRADED MODULE
    Chardin, Marc
    Jouanolou, Jean-Pierre
    Rahimi, Ahad
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (01) : 63 - 92
  • [5] CoCoATeam, COCOA SYST DOING COM
  • [6] On the structure of sequentially generalized Cohen-Macaulay modules
    Cuong, Nguyen Tu
    Cuong, Doan Trung
    [J]. JOURNAL OF ALGEBRA, 2007, 317 (02) : 714 - 742
  • [7] Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules
    Cuong, NT
    Nhan, LT
    [J]. JOURNAL OF ALGEBRA, 2003, 267 (01) : 156 - 177
  • [8] Artinian and Non-Artinian Local Cohomology Modules
    Dibaei, Mohammad T.
    Vahidi, Alireza
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (04): : 619 - 629
  • [9] Bounds for the regularity of local cohomology of bigraded modules
    Herzog J.
    Rahimi A.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 289 - 300
  • [10] Hibi T., 2010, GRADUATE TEXT MATH, V260