Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals

被引:123
|
作者
Park, Si Jae [6 ]
Kim, Eun Young [1 ]
Noh, Won [1 ]
Park, Hye Min [2 ,3 ]
Oh, Young Hoon [1 ]
Lee, Seung Hwan [1 ]
Song, Bong Keun [1 ]
Jegal, Jonggeon [1 ]
Lee, Sang Yup [2 ,3 ,4 ,5 ]
机构
[1] Korea Res Inst Chem Technol, Ind Biochem Res Grp, Res Ctr Biobased Chem, Div Convergence Chem, Taejon 305600, South Korea
[2] Korea Adv Inst Sci & Technol, Ctr Syst & Synthet Biotechnol, Metab & Biomol Engn Natl Res Lab, Dept Chem & Biomol Engn,Program BK21, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Inst BioCentury, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Dept Biol Sci, BioProc Engn Res Ctr, Taejon 305701, South Korea
[5] Korea Adv Inst Sci & Technol, Bioinformat Res Ctr, Taejon 305701, South Korea
[6] Myongji Univ, Dept Environm Engn & Energy, Yongin 449728, Gyeonggido, South Korea
基金
新加坡国家研究基金会;
关键词
L-lysine; 5-aminovalerate; Glutarate; Escherichia coli; Metabolic engineering; CORYNEBACTERIUM-GLUTAMICUM; LYSINE CATABOLISM; POLYLACTIC ACID; CARBON DIAMINE; BIOSYNTHESIS; POLYHYDROXYALKANOATES; OVERPRODUCTION; COPOLYMERS; PATHWAYS; ALCOHOLS;
D O I
10.1016/j.ymben.2012.11.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the recombinant E. coli WL3110 strain expressing the Pseudomonas putida davAB genes encoding delta-aminovaleramidase and lysine 2-monooxygenase, respectively, were cultured in a medium containing 20 g/L of glucose and 10 g/L of L-lysine, 3.6 g/L of 5AVA was produced by converting 7 g/L of L-lysine. When the davAB genes were introduced into recombinant E. coli strainXQ56allowing enhanced L-lysine synthesis, 0.27 and 0.5 g/L of 5AVA were produced directly from glucose by batch and fed-batch cultures, respectively. Further conversion of 5AVA into glutarate could be demonstrated by expression of the P. putida gabTD genes encoding 5AVA aminotransferase and glutarate semialdehyde dehydrogenase. When recombinant E. coli WL3110 strain expressing the davAB and gabTD genes was cultured in a medium containing 20 g/L glucose, 10 g/L L-lysine and 10 g/L alpha-ketoglutarate, 1.7 g/L of glutarate was produced. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [21] Metabolic engineering of Escherichia coli for the production of isobutanol: a review
    Gu, Pengfei
    Liu, Liwen
    Ma, Qianqian
    Dong, Zilong
    Wang, Qiang
    Xu, Jie
    Huang, Zhaosong
    Li, Qiang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (10)
  • [22] Metabolic engineering of Escherichia coli for the production of neryl acetate
    Zong, Zhen
    Zhang, Suping
    Zhen, Menglin
    Xu, Ning
    Li, Dongsheng
    Wang, Chao
    Gao, Bing
    Hua, Qiang
    Liu, Zhijie
    BIOCHEMICAL ENGINEERING JOURNAL, 2020, 161
  • [23] Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals
    Kei-Anne Baritugo
    Jina Son
    Yu Jung Sohn
    Hee Taek Kim
    Jeong Chan Joo
    Jong-il Choi
    Si Jae Park
    Korean Journal of Chemical Engineering, 2021, 38 : 1291 - 1307
  • [24] Metabolic Engineering of Escherichia coli for Production of Butyric Acid
    Saini, Mukesh
    Wang, Zei Wen
    Chiang, Chung-Jen
    Chao, Yun-Peng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (19) : 4342 - 4348
  • [25] Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and Its Copolymers
    Jung, Yu Kyung
    Kim, Tae Yong
    Park, Si Jae
    Lee, Sang Yup
    BIOTECHNOLOGY AND BIOENGINEERING, 2010, 105 (01) : 161 - 171
  • [26] Systematic Metabolic Engineering for Enhanced Cytidine 5′-Monophosphate Production in Escherichia coli
    Dong, Tiantian
    Shen, Wei
    Xia, Yuanyuan
    Chen, Xianzhong
    Yang, Haiquan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (49) : 27346 - 27354
  • [27] Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production
    Chen, Xianzhong
    Zhou, Li
    Tian, Kangming
    Kumar, Ashwani
    Singh, Suren
    Prior, Bernard A.
    Wang, Zhengxiang
    BIOTECHNOLOGY ADVANCES, 2013, 31 (08) : 1200 - 1223
  • [28] Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli
    Chen, Xiaoyan
    Xu, Jingliang
    Yang, Liu
    Yuan, Zhenhong
    Xiao, Shiyuan
    Zhang, Yu
    Liang, Cuiyi
    He, Minchao
    Guo, Ying
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (11) : 1473 - 1479
  • [29] Efficient production of phenyllactic acid in Escherichia coli via metabolic engineering and fermentation optimization strategies
    Wu, Weibin
    Chen, Maosen
    Li, Chenxi
    Zhong, Jie
    Xie, Rusheng
    Pan, Zhibin
    Lin, Junhan
    Qi, Feng
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [30] Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase
    Liu, Pan
    Zhang, Haiwei
    Lv, Min
    Hu, Mandong
    Li, Zhong
    Gao, Chao
    Xu, Ping
    Ma, Cuiqing
    SCIENTIFIC REPORTS, 2014, 4