On generalized Dhombres equations with non-constant rational solutions in the complex plane

被引:2
作者
Reich, L. [2 ]
Smital, J. [1 ]
Stefankova, M. [1 ]
机构
[1] Silesian Univ, Math Inst, CZ-74601 Opava, Czech Republic
[2] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
关键词
Iterative functional equation; Generalized Dhombres equation; Local analytic solution; Rational solution; Holomorphic solution; FUNCTIONAL-EQUATION;
D O I
10.1016/j.jmaa.2012.10.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the generalized Dhombres functional equations f (zf (z)) = phi(f (z)) which have a non-constant rational solution f(0), holomorphic at 0, with f(0)(0) = w(0), under the assumption that phi is a non-constant meromorphic function, holomorphic at w(0). All rational solutions of such an equation which are holomorphic at 0 and all formal solutions are determined. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 9 条
[1]  
Dhombres J., 1975, C R ACAD SCI PARIS A, V28, P809
[2]  
Kuczma M., 1994, ENCY MATH ITS APPL, V32
[3]   The holomorphic solutions of the generalized Dhombres functional equation [J].
Reich, L. ;
Smital, J. ;
Stefankova, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) :880-888
[4]   Functional equation of Dhombres type - a simple equation with many open problems [J].
Reich, L. ;
Smital, J. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (11-12) :1179-1191
[5]  
Reich L., 2006, OSTERREICH AKAD W MN, V241, P3
[6]  
Reich L., 1994, AARHUS U VARIOUS PUB, V42, P245
[7]   On generalized Dhombres equations with nonconstant polynomial solutions in the complex plane [J].
Reich, Ludwig ;
Smital, Jaroslav .
AEQUATIONES MATHEMATICAE, 2010, 80 (1-2) :201-208
[8]  
Tomaschek J., 2011, 358 KARL FRANZ U GRA
[9]   Formal solutions of the generalized Dhombres functional equation with value one at zero [J].
Tomaschek, Joerg ;
Reich, Ludwig .
AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) :117-126