Data-driven uncertainty quantification in macroscopic traffic flow models

被引:7
作者
Wuerth, Alexandra [1 ]
Binois, Mickael [1 ]
Goatin, Paola [1 ]
Goettlich, Simone [2 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, Inria,Inria Sophia Antipolis Mediterranee, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
[2] Univ Mannheim, Dept Math, B 6,28-29, D-68159 Mannheim, Germany
关键词
Macroscopic traffic flow models; Godunov scheme; Loop detector traffic data; Bayesian calibration; Parameter estimation; Optimization; PEDESTRIAN DYNAMICS MODELS; BAYESIAN CALIBRATION; PARAMETER-ESTIMATION; 2ND-ORDER MODELS; SCHEMES; WAVES;
D O I
10.1007/s10444-022-09989-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a Bayesian approach for parameter uncertainty quantification in macroscopic traffic flow models from cross-sectional data. We consider both a simple first order model consisting in the mass conservation equation and its second order version including a speed evolution equation. A bias term is introduced and modeled as a Gaussian process to account for the traffic flow models limitations. We validate the results comparing the error in the macroscopic variables (flow, speed, density) for both models, showing that second order models globally perform better in reconstructing traffic quantities of interest.
引用
收藏
页数:26
相关论文
共 59 条
[11]   MICRO-MACRO LIMIT OF A NONLOCAL GENERALIZED AW-RASCLE TYPE MODEL [J].
Chiarello, Felisia A. ;
Friedrich, Jan ;
Goatin, Paola ;
Goettlich, Simone .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (04) :1841-1861
[12]   On the initial boundary value problem for Temple systems [J].
Colombo, RM ;
Groli, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :569-589
[13]   PARAMETER ESTIMATION OF SOCIAL FORCES IN PEDESTRIAN DYNAMICS MODELS VIA A PROBABILISTIC METHOD [J].
Corbetta, Alessandro ;
Muntean, Adrian ;
Vafayi, Kiamars .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (02) :337-356
[14]  
Crandell I., 2017, 33 AIAA AERODYNAMI, P4131
[15]  
Dafermos Constantine M., 2005, Hyperbolic conservation laws in continuum physics, V3
[16]   THE CELL TRANSMISSION MODEL - A DYNAMIC REPRESENTATION OF HIGHWAY TRAFFIC CONSISTENT WITH THE HYDRODYNAMIC THEORY [J].
DAGANZO, CF .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1994, 28 (04) :269-287
[17]   SIMPLIFIED 2ND-ORDER GODUNOV-TYPE METHODS [J].
DAVIS, SF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (03) :445-473
[18]   A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data [J].
Delle Monache, Maria Laura ;
Chi, Karen ;
Chen, Yong ;
Goatin, Paola ;
Han, Ke ;
Qiu, Jing-mei ;
Piccoli, Benedetto .
AXIOMS, 2021, 10 (01) :1-20
[19]  
Fan S., 2013, DATA FITTED GENERIC
[20]  
Fan S., 2017, A collapsed generalized Aw-Rascle-Zhang model and its model accuracy