Data-driven uncertainty quantification in macroscopic traffic flow models

被引:7
作者
Wuerth, Alexandra [1 ]
Binois, Mickael [1 ]
Goatin, Paola [1 ]
Goettlich, Simone [2 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, Inria,Inria Sophia Antipolis Mediterranee, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
[2] Univ Mannheim, Dept Math, B 6,28-29, D-68159 Mannheim, Germany
关键词
Macroscopic traffic flow models; Godunov scheme; Loop detector traffic data; Bayesian calibration; Parameter estimation; Optimization; PEDESTRIAN DYNAMICS MODELS; BAYESIAN CALIBRATION; PARAMETER-ESTIMATION; 2ND-ORDER MODELS; SCHEMES; WAVES;
D O I
10.1007/s10444-022-09989-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a Bayesian approach for parameter uncertainty quantification in macroscopic traffic flow models from cross-sectional data. We consider both a simple first order model consisting in the mass conservation equation and its second order version including a speed evolution equation. A bias term is introduced and modeled as a Gaussian process to account for the traffic flow models limitations. We validate the results comparing the error in the macroscopic variables (flow, speed, density) for both models, showing that second order models globally perform better in reconstructing traffic quantities of interest.
引用
收藏
页数:26
相关论文
共 59 条
[1]  
[Anonymous], MN DOT TRAFF DAT
[2]  
[Anonymous], 2009, TRANSPORTATION RES B
[3]  
[Anonymous], 1961, Theory of Traffic Flow
[4]   Resurrection of "second order" models of traffic flow [J].
Aw, A ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :916-938
[5]   Predicting Vehicle Crashworthiness: Validation of Computer Models for Functional and Hierarchical Data [J].
Bayarri, M. J. ;
Berger, James O. ;
Kennedy, Marc C. ;
Kottas, Athanasios ;
Paulo, Rui ;
Sacks, Jerry ;
Cafeo, John A. ;
Lin, Chin-Hsu ;
Tu, Jian .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) :929-943
[6]   Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data [J].
Bertino, Enrico ;
Duvigneau, Regis ;
Goatin, Paola .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) :1511-1533
[7]   Learning about physical parameters: the importance of model discrepancy [J].
Brynjarsdottir, Jenny ;
O'Hagan, Anthony .
INVERSE PROBLEMS, 2014, 30 (11)
[8]  
Carmassi M, 2019, J SFDS, V160, P1
[9]  
Chalons C, 2007, COMMUN MATH SCI, V5, P533
[10]   Fundamental Diagram Estimation Through Passing Rate Measurements in Congestion [J].
Chiabaut, Nicolas ;
Buisson, Christine ;
Leclercq, Ludovic .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2009, 10 (02) :355-359