Parabolic Systems with Measurable Coefficients in Reifenberg Domains

被引:22
|
作者
Byun, Sun-Sig [1 ,2 ]
Palagachev, Dian K. [3 ]
Wang, Lihe [4 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[4] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
基金
新加坡国家研究基金会;
关键词
ELLIPTIC-EQUATIONS; GRADIENT; THEOREM;
D O I
10.1093/imrn/rns142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parabolic system in divergence form with measurable coefficients in a nonsmooth bounded domain to obtain a global gradient estimate for the weak solution in the setting of Orlicz space which is a natural generalization of L-p space. The coefficients are assumed to be merely measurable in one spatial variable and have small bounded mean oscillation semi-norms in all the other variables. The boundary of the domain can be locally approximated by a hyperplane, a so-called delta-Reifenberg domain which is beyond the Lipschitz category.
引用
收藏
页码:3053 / 3086
页数:34
相关论文
共 50 条
  • [1] Elliptic equations with measurable coefficients in Reifenberg domains
    Byun, Sun-Sig
    Wang, Lihe
    ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2648 - 2673
  • [2] Pointwise estimates for Stokes systems with BMO coefficients in Reifenberg domains
    Ma, Lingwei
    Zhang, Zhenqiu
    Xiong, Qi
    ANALYSIS AND APPLICATIONS, 2019, 17 (04) : 569 - 596
  • [3] PARABOLIC SYSTEMS WITH MEASURABLE COEFFICIENTS IN WEIGHTED SOBOLEV SPACES
    Kim, Doyoon
    Kim, Kyeong-Hun
    Lee, Kijung
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (08) : 2587 - 2613
  • [4] Parabolic systems with measurable coefficients in weighted Orlicz spaces
    Byun, Sun-Sig
    Ok, Jihoon
    Palagachev, Dian K.
    Softova, Lubomira G.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (02)
  • [5] Global higher integrability for the parabolic equations in Reifenberg domains
    Yao, Fengping
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (09) : 1358 - 1367
  • [6] Gradient estimates for elliptic systems with measurable coefficients in nonsmooth domains
    Byun, Sun-Sig
    Ryu, Seungjin
    Wang, Lihe
    MANUSCRIPTA MATHEMATICA, 2010, 133 (1-2) : 225 - 245
  • [7] A weighted Sobolev regularity theory of the parabolic equations with measurable coefficients on conic domains in Rd
    Kim, Kyeong-Hun
    Lee, Kijung
    Seo, Jinsol
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 291 : 154 - 194
  • [8] QUASILINEAR DIVERGENCE FORM PARABOLIC EQUATIONS IN REIFENBERG FLAT DOMAINS
    Palagachev, Dian K.
    Softova, Lubomira G.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (04) : 1397 - 1410
  • [9] L p -regularity for fourth order parabolic systems with measurable coefficients
    Byun, Sun-Sig
    Wang, Lihe
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) : 515 - 530
  • [10] Calderon-Zygmund estimates for a parabolic Schrodinger system on Reifenberg domains
    Nguyen Ngoc Trong
    Le Xuan Truong
    Tan Duc Do
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3797 - 3820