Traces of compact operators and the noncommutative residue

被引:27
作者
Kalton, Nigel
Lord, Steven [1 ]
Potapov, Denis [2 ]
Sukochev, Fedor [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Noncommutative residue; Connes' trace theorem; Lidskii theorem; Noncommutative geometry; Spectral theory; Singular trace; SPECTRAL CHARACTERIZATION; COMMUTATORS; SUMS; GEOMETRY; IDEALS;
D O I
10.1016/j.aim.2012.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the noncommutative residue of M. Wodzicki on compactly supported classical pseudodifferential operators of order -d and generalise A. Connes' trace theorem, which states that the residue can be calculated using a singular trace on compact operators. Contrary to the role of the noncommutative residue for the classical pseudo-differential operators, a corollary is that the pseudo-differential operators of order -d do not have a 'unique' trace; pseudo-differential operators can be non-measurable in Connes' sense. Other corollaries are given clarifying the role of Dixmier traces in noncommutative geometry, including the definitive statement of Connes' original theorem. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 44 条
[1]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[2]  
[Anonymous], 2012, DEGRUYTER STUDIES MA
[3]  
[Anonymous], 2010, THEORY APPL
[4]  
Arsu G, 2008, J OPERAT THEOR, V59, P81
[5]   A Lidskii type formula for Dixmier traces [J].
Azamov, NA ;
Sukochev, FA .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (02) :107-112
[6]   Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras [J].
Benameur, MT ;
Fack, T .
ADVANCES IN MATHEMATICS, 2006, 199 (01) :29-87
[7]  
Birman M.Sh., 1991, Adv. Soviet Math., V7, P85
[8]  
Calkin JW, 1944, ANN MATH, V42, P839
[9]   The spectral action principle [J].
Chamseddine, AH ;
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :731-750
[10]  
Chavel I., 1984, EIGENVALUES RIEMANNI