An Overview of Optimization Methods for Tidal Instream and Wind Turbines Farms

被引:0
|
作者
Fituri, Ali [1 ]
Aly, Hamed H. [1 ,2 ]
El-Hawary, M. E. [1 ]
机构
[1] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS, Canada
[2] Zagazig Univ, Zagazig, Egypt
来源
2017 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC) | 2017年
关键词
Array; Design; Optimization; Sizing; Tidal Instream Farm; Tidal Instream Turbine; Wind Turbine; GENETIC ALGORITHM; DESIGN; SYSTEM; LAYOUT;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Renewable energy resources have a positive environmental impact and are considered as a vital source of pollution free energy. Tidal instream and wind energy use similar techniques for generating electrical energy. Wind energy cost is still lower than tidal instream energy cost. However Tidal instream speed is more predictable than wind speed. Researchers are still working on tidal instream to reduce the energy extraction cost. Optimization is one of the best tools used to minimize the cost depending on some constraints. This paper is exploring different optimization tools for wind and tidal instream energies. Three different concepts are discussed using various tools for both types of energy. The fist concept is using arrays layout arrangements for the optimum performance. The second concept consider the turbine parameters for the minimum energy cost. The third concept depends on the coordination between several types of energy sources and the location of the units for the minimum cost.
引用
收藏
页码:458 / 462
页数:5
相关论文
共 50 条
  • [1] The Application of Water Cycle Optimization Algorithm for Optimal Placement of Wind Turbines in Wind Farms
    Rezk, Hegazy
    Fathy, Ahmed
    Diab, Ahmed A. Zaki
    Al-Dhaifallah, Mujahed
    ENERGIES, 2019, 12 (22)
  • [2] Minimizing transportation and installation costs for turbines in offshore wind farms
    Sarker, Bhaba R.
    Ibn Faiz, Tasnim
    RENEWABLE ENERGY, 2017, 101 : 667 - 679
  • [3] Comprehensive Optimization for Fatigue Loads of Wind Turbines in Complex-Terrain Wind Farms
    Yang, Jian
    Zheng, Songyue
    Song, Dongran
    Su, Mei
    Yang, Xuebing
    Joo, Young Hoon
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (02) : 909 - 919
  • [4] Wind farms with counter-rotating wind turbines
    Vasel-Be-Hagh, Ahmadreza
    Archer, Cristina L.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2017, 24 : 19 - 30
  • [5] Electrical Layout Optimization of Onshore Wind Farms Based on a Two-Stage Approach
    Deveci, Kaan
    Barutcu, Burak
    Alpman, Emre
    Tascikaraoglu, Akin
    Erdinc, Ozan
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (04) : 2407 - 2416
  • [6] Minimizing the Energy Cost of Offshore Wind Farms by Simultaneously Optimizing Wind Turbines and Their Layout
    Luo, Longfu
    Zhang, Xiaofeng
    Song, Dongran
    Tang, Weiyi
    Li, Li
    Tian, Xiaoyu
    APPLIED SCIENCES-BASEL, 2019, 9 (05):
  • [7] A Coordinated Planning Method for Micrositing of Tidal Current Turbines and Collector System Optimization in Tidal Current Farms
    Ren, Zhouyang
    Wang, Yuanmeng
    Li, Hui
    Liu, Xuan
    Wen, Yunfeng
    Li, Wenyuan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (01) : 292 - 302
  • [8] Consolidity Analysis of Wind Turbines in Wind Farms
    Mohammed, Ibrahim R.
    Saleh, Amr A.
    Saleh, Ahmad M.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2020, 10 (01): : 205 - 216
  • [9] Design optimization of offshore wind farms with multiple types of wind turbines
    Feng, Ju
    Shen, Wen Zhong
    APPLIED ENERGY, 2017, 205 : 1283 - 1297
  • [10] Design and Analysis of Offshore Wind Turbines: Problem Formulation and Optimization Techniques
    Ghaemifard, Saeedeh
    Ghannadiasl, Amin
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2024, 23 (04) : 707 - 722