A note on EM algorithm for mixture models

被引:28
作者
Yao, Weixin [1 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
关键词
Adaptive regression; EM algorithm; Edge-preserving smoothers; Mode; Robust regression; LIKELIHOOD; REGRESSION;
D O I
10.1016/j.spl.2012.10.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Expectation-maximization (EM) algorithm has been used to maximize the likelihood function or posterior when the model contains unobserved latent variables. One main important application of EM algorithm is to find the maximum likelihood estimator for mixture models. In this article, we propose an EM type algorithm to maximize a class of mixture type objective functions. In addition, we prove the monotone ascending property of the proposed algorithm and discuss some of its applications. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:519 / 526
页数:8
相关论文
共 50 条
[31]   An EM algorithm for a semiparametric finite mixture model [J].
Zhang, B .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (10) :791-802
[32]   The EM algorithm for mixture regression with missing covariates [J].
Kim, Hyungmin ;
Ham, Geonhee ;
Seo, Byungtae .
KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) :1347-1359
[33]   A stochastic EM algorithm for a semiparametric mixture model [J].
Bordes, Laurent ;
Chauveau, Didier ;
Vandekerkhove, Pierre .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (11) :5429-5443
[34]   A Greedy EM Algorithm for Gaussian Mixture Learning [J].
Nikos Vlassis ;
Aristidis Likas .
Neural Processing Letters, 2002, 15 :77-87
[35]   A greedy EM algorithm for Gaussian mixture learning [J].
Vlassis, N ;
Likas, A .
NEURAL PROCESSING LETTERS, 2002, 15 (01) :77-87
[36]   AN EM ALGORITHM FOR A MIXTURE MODEL OF COUNT DATA [J].
FONG, DYT ;
YIP, P .
STATISTICS & PROBABILITY LETTERS, 1993, 17 (01) :53-60
[37]   EM algorithm for symmetric stable mixture model [J].
Teimouri, Mahdi ;
Rezakhah, Saeid ;
Mohammadpour, Adel .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (02) :582-604
[38]   A note on the mixture transition distribution and hidden Markov models [J].
Bartolucci, Francesco ;
Farcomeni, Alessio .
JOURNAL OF TIME SERIES ANALYSIS, 2010, 31 (02) :132-138
[39]   Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models [J].
Biernacki, C ;
Celeux, G ;
Govaert, G .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) :561-575
[40]   Improved convergence guarantees for learning Gaussian mixture models by EM and gradient EM [J].
Segol, Nimrod ;
Nadler, Boaz .
ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02) :4510-4544