Highly ordered multilayered 3D graphene decorated with metal nanoparticles

被引:74
作者
Sattayasamitsathit, Sirilak [1 ]
Gu, Yonge [1 ,2 ]
Kaufmann, Kevin [1 ]
Jia, Wenzhao [1 ]
Xiao, Xiaoyin [3 ]
Rodriguez, Mark [3 ]
Minteer, Shelley [4 ]
Cha, Jennifer [1 ]
Burckel, D. Bruce [3 ]
Wang, Chunming [2 ]
Polsky, Ronen [3 ]
Wang, Joseph [1 ]
机构
[1] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[2] Lanzhou Univ, Dept Chem, Lanzhou 730000, Peoples R China
[3] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA
[4] Univ Utah, Dept Chem & Mat Sci & Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
INTERCONNECTED GRAPHENE; FUEL-CELLS; PLATINUM; PERFORMANCE; NETWORKS; HYBRIDS; GROWTH;
D O I
10.1039/c2ta00954d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly ordered multi-layered three-dimensional (3D) graphene structures decorated with Pd, Pt and Au metal nanoparticles are prepared and characterized. The ability to control the morphology, distribution and size of the metal nanoparticles on the 3D graphene support upon changing the electro- and electroless-deposition conditions is demonstrated. Tailor-made Pt nanostructures, with nanospike and nanoparticle shapes, are prepared using electroless deposition techniques. Au nanoflowers and nanoparticle structures and Pd nanocubes are obtained following electrodeposition onto the 3D graphene support. The deposition patterns and trends are characterized. The greatly enhanced electrocatalytic activity of the metal-NP-graphene surfaces has been illustrated in connection to voltammetric measurements of ORR and hydrogen peroxide at 3D-graphene coated with Pt and Pd nanoparticles, respectively. Such metal nanoparticles decorated multi-layer 3D graphene allows for high mass transport access and catalytic activity for a diverse range of applications, including sensor and fuel-cell technologies.
引用
收藏
页码:1639 / 1645
页数:7
相关论文
共 35 条
  • [1] [Anonymous], 2010, ANGEW CHEMIE, DOI DOI 10.1002/ANGE.201000270
  • [2] Kinetics and growth mechanism of electrodeposited palladium nanocrystallites
    Bera, D
    Kuiry, SC
    Seal, S
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (02) : 556 - 562
  • [3] Lithographically Defined Porous Carbon Electrodes
    Burckel, D. Bruce
    Washburn, Cody M.
    Raub, Alex K.
    Brueck, Steven R. J.
    Wheeler, David R.
    Brozik, Susan M.
    Polsky, Ronen
    [J]. SMALL, 2009, 5 (24) : 2792 - 2796
  • [4] Nanobioelectroanalysis Based on Carbon/Inorganic Hybrid Nanoarchitectures
    Campuzano, Susana
    Wang, Joseph
    [J]. ELECTROANALYSIS, 2011, 23 (06) : 1289 - 1300
  • [5] Preparation of Novel 3D Graphene Networks for Supercapacitor Applications
    Cao, Xiehong
    Shi, Yumeng
    Shi, Wenhui
    Lu, Gang
    Huang, Xiao
    Yan, Qingyu
    Zhang, Qichun
    Zhang, Hua
    [J]. SMALL, 2011, 7 (22) : 3163 - 3168
  • [6] Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
  • [7] Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers
    Dominguez-Dominguez, Sonia
    Pardilla, Joaquin Arias
    Murcia, Angel Berenguer
    Morallon, Emilia
    Cazorla-Amoros, Diego
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (02) : 259 - 268
  • [8] Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation
    Dong, Lifeng
    Gari, Raghavendar Reddy Sanganna
    Li, Zhou
    Craig, Michael M.
    Hou, Shifeng
    [J]. CARBON, 2010, 48 (03) : 781 - 787
  • [9] Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors
    El-Kady, Maher F.
    Strong, Veronica
    Dubin, Sergey
    Kaner, Richard B.
    [J]. SCIENCE, 2012, 335 (6074) : 1326 - 1330
  • [10] Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating
    Estevez, Luis
    Kelarakis, Antonios
    Gong, Qianming
    Da'as, Eman Husni
    Giannelis, Emmanuel P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (16) : 6122 - 6125