MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19q codeleted oligodendroglioma

被引:8
作者
Zhang, Shun [1 ,2 ]
Chiang, Gloria Chia-Yi [2 ]
Magge, Rajiv S. [3 ]
Fine, Howard Alan [3 ]
Ramakrishna, Rohan [4 ]
Chang, Eileen Wang [2 ]
Pulisetty, Tejas [5 ]
Wang, Yi [2 ,6 ]
Zhu, Wenzhen [1 ]
Kovanlikaya, Ilhami [2 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan, Hubei, Peoples R China
[2] Weill Cornell Med, Dept Radiol, 407 E 61st St Suite 107, New York, NY 10065 USA
[3] Weill Cornell Med, Dept Neurol, New York, NY 10065 USA
[4] Weill Cornell Med, Dept Neurol Surg, New York, NY 10065 USA
[5] St Louis Univ, Dept Radiol, St Louis, MO 63103 USA
[6] Cornell Univ, Dept Biomed Engn, Ithaca, NY USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Texture analysis; Low grade glioma; Astrocytoma; Oligodendroglioma; HISTOGRAM ANALYSIS; DIFFUSION; PERFUSION; FEATURES; CLASSIFICATION; DISTINGUISH; PREDICTION; SURVIVAL; TUMORS;
D O I
10.1016/j.mri.2018.11.008
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Texture analysis performed on MR images can detect quantitative features that are imperceptible to human visual assessment. The purpose of this study was to evaluate the feasibility of texture analysis on preoperative conventional MRI to discriminate between histological subtypes in low-grade gliomas (LGGs), and to determine the utility of texture analysis compared to histogram analysis alone. Methods: A total of 41 patients with LGG, 21 astrocytoma and 20 1p/19q codeleted oligodendroglioma were included in this study. Patients were randomly divided into training (60%) and testing (40%) sets. Texture analysis was performed on conventional MRI sequences to obtain the most discriminant factor (MDF) values for both the training and testing data. Receiver operating characteristic (ROC) curve analyses were then performed using the MDF values and 9 histogram parameters in the training data to obtain cut-off values for determining the correct rate of discriminating between astrocytoma and oligodendroglioma in the testing data. Results: The ROC analyses using MDF values resulted in an area under the curve (AUC) of 0.91 (sensitivity 86%, specificity 87%) for T2w FLAIR, 0.94 (87%, 89%) for ADC, 0.98 (93%, 95%) for T1w, and 0.88 (78%, 86%) for T1w + Gd sequences. Using the best cut-off values, MDF correctly discriminated between the two groups in 94%, 82%, 100%, and 88% of cases in the testing data, respectively. The MDF outperformed all 9 of the histogram parameters. Conclusion: Texture analysis performed on conventional preoperative MRI images can accurately predict histological subtype of LGGs, which would have an impact on clinical management.
引用
收藏
页码:254 / 258
页数:5
相关论文
共 50 条
  • [1] Preoperative Radiomics Analysis of 1p/19q Status in WHO Grade II Gliomas
    Fan, Ziwen
    Sun, Zhiyan
    Fang, Shengyu
    Li, Yiming
    Liu, Xing
    Liang, Yucha
    Liu, Yukun
    Zhou, Chunyao
    Zhu, Qiang
    Zhang, Hong
    Li, Tianshi
    Li, Shaowu
    Jiang, Tao
    Wang, Yinyan
    Wang, Lei
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [2] Gliosarcoma arising from oligodendroglioma, IDH mutant and 1p/19q codeleted
    Yasuda, Takayuki
    Nitta, Masayuki
    Komori, Takashi
    Kobayashi, Tatsuya
    Masui, Kenta
    Maruyama, Takashi
    Sawada, Tatsuo
    Muragaki, Yoshihiro
    Kawamata, Takakazu
    NEUROPATHOLOGY, 2018, 38 (01) : 41 - 46
  • [3] Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status
    Kocak, Burak
    Durmaz, Emine Sebnem
    Ates, Ece
    Sel, Ipek
    Gunes, Saime Turgut
    Kaya, Ozlem Korkmaz
    Zeynalova, Amalya
    Kilickesmez, Ozgur
    EUROPEAN RADIOLOGY, 2020, 30 (02) : 877 - 886
  • [4] Gliomas With 1p/19q Codeletion: a.k.a. Oligodendroglioma
    Cairncross, Gregory
    Jenkins, Robert
    CANCER JOURNAL, 2008, 14 (06) : 352 - 357
  • [5] Salvage therapies for radiation-relapsed isocitrate dehydrogenase-mutant astrocytoma and 1p/19q codeleted oligodendroglioma
    Ma, Sirui
    Rudra, Soumon
    Campian, Jian L.
    Chheda, Milan G.
    Johanns, Tanner M.
    Ansstas, George
    Abraham, Christopher D.
    Chicoine, Michael R.
    Leuthardt, Eric C.
    Dowling, Joshua L.
    Dunn, Gavin P.
    Kim, Albert H.
    Huang, Jiayi
    NEURO-ONCOLOGY ADVANCES, 2021, 3 (01)
  • [6] MRI Features Can Predict 1p/19q Status in Intracranial Gliomas
    Lasocki, A.
    Gaillard, F.
    Gorelik, A.
    Gonzales, M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (04) : 687 - 692
  • [7] RADIOGENOMIC CLASSIFICATION OF THE 1P/19Q STATUS IN PRESUMED LOW-GRADE GLIOMAS
    van der Voort, Sebastian R.
    Gahrmann, Renske
    van den Bent, Martin J.
    Vincent, Arnaud J. P. E.
    Niessen, Wiro J.
    Smits, Marion
    Klein, Stefan
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 638 - 641
  • [8] Recurrent oligodendroglioma with changed 1p/19q status
    Barresi, Valeria
    Mafficini, Andrea
    Calicchia, Martina
    Piredda, Maria Liliana
    Musumeci, Angelo
    Ghimenton, Claudio
    Scarpa, Aldo
    NEUROPATHOLOGY, 2022, 42 (02) : 160 - 166
  • [9] Ancillary fish analysis for 1p and 19q status: Preliminary observations in 287 gliomas and oligodendroglioma mimics
    Perry, A
    Fuller, CE
    Banerjee, R
    Brat, DJ
    Scheithauer, BW
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2003, 8 : A1 - A9
  • [10] Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy
    Branzoli, Francesca
    Pontoizeau, Clement
    Tchara, Lucien
    Di Stefano, Anna Luisa
    Kamoun, Aurelie
    Deelchand, Dinesh K.
    Valabregue, Romain
    Lehericy, Stephane
    Sanson, Marc
    Ottolenghi, Chris
    Marjanska, Malgorzata
    NEURO-ONCOLOGY, 2019, 21 (06) : 765 - 774