MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19q codeleted oligodendroglioma

被引:8
作者
Zhang, Shun [1 ,2 ]
Chiang, Gloria Chia-Yi [2 ]
Magge, Rajiv S. [3 ]
Fine, Howard Alan [3 ]
Ramakrishna, Rohan [4 ]
Chang, Eileen Wang [2 ]
Pulisetty, Tejas [5 ]
Wang, Yi [2 ,6 ]
Zhu, Wenzhen [1 ]
Kovanlikaya, Ilhami [2 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan, Hubei, Peoples R China
[2] Weill Cornell Med, Dept Radiol, 407 E 61st St Suite 107, New York, NY 10065 USA
[3] Weill Cornell Med, Dept Neurol, New York, NY 10065 USA
[4] Weill Cornell Med, Dept Neurol Surg, New York, NY 10065 USA
[5] St Louis Univ, Dept Radiol, St Louis, MO 63103 USA
[6] Cornell Univ, Dept Biomed Engn, Ithaca, NY USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Texture analysis; Low grade glioma; Astrocytoma; Oligodendroglioma; HISTOGRAM ANALYSIS; DIFFUSION; PERFUSION; FEATURES; CLASSIFICATION; DISTINGUISH; PREDICTION; SURVIVAL; TUMORS;
D O I
10.1016/j.mri.2018.11.008
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Texture analysis performed on MR images can detect quantitative features that are imperceptible to human visual assessment. The purpose of this study was to evaluate the feasibility of texture analysis on preoperative conventional MRI to discriminate between histological subtypes in low-grade gliomas (LGGs), and to determine the utility of texture analysis compared to histogram analysis alone. Methods: A total of 41 patients with LGG, 21 astrocytoma and 20 1p/19q codeleted oligodendroglioma were included in this study. Patients were randomly divided into training (60%) and testing (40%) sets. Texture analysis was performed on conventional MRI sequences to obtain the most discriminant factor (MDF) values for both the training and testing data. Receiver operating characteristic (ROC) curve analyses were then performed using the MDF values and 9 histogram parameters in the training data to obtain cut-off values for determining the correct rate of discriminating between astrocytoma and oligodendroglioma in the testing data. Results: The ROC analyses using MDF values resulted in an area under the curve (AUC) of 0.91 (sensitivity 86%, specificity 87%) for T2w FLAIR, 0.94 (87%, 89%) for ADC, 0.98 (93%, 95%) for T1w, and 0.88 (78%, 86%) for T1w + Gd sequences. Using the best cut-off values, MDF correctly discriminated between the two groups in 94%, 82%, 100%, and 88% of cases in the testing data, respectively. The MDF outperformed all 9 of the histogram parameters. Conclusion: Texture analysis performed on conventional preoperative MRI images can accurately predict histological subtype of LGGs, which would have an impact on clinical management.
引用
收藏
页码:254 / 258
页数:5
相关论文
共 34 条
[1]   Quantitative and textural analysis of magnetization transfer and diffusion images in the early detection of brain metastases [J].
Ainsworth, Nicola L. ;
McLean, Mary A. ;
McIntyre, Dominick J. O. ;
Honess, Davina J. ;
Brown, Anna M. ;
Harden, Susan V. ;
Griffiths, John R. .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (05) :1987-1995
[2]   Dynamic Contrast-Enhanced Perfusion MRI and Diffusion-Weighted Imaging in Grading of Gliomas [J].
Arevalo-Perez, Julio ;
Peck, Kyung K. ;
Young, Robert J. ;
Holodny, Andrei I. ;
Karimi, Sasan ;
Lyo, John K. .
JOURNAL OF NEUROIMAGING, 2015, 25 (05) :792-798
[3]   Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics [J].
Bahrami, Naeim ;
Hartman, Stephen J. ;
Chang, Yu-Hsuan ;
Delfanti, Rachel ;
White, Nathan S. ;
Karunamuni, Roshan ;
Seibert, Tyler M. ;
Dale, Anders M. ;
Hattangadi-Gluth, Jona A. ;
Piccioni, David ;
Farid, Nikdokht ;
McDonald, Carrie R. .
JOURNAL OF NEURO-ONCOLOGY, 2018, 139 (03) :633-642
[4]   Canine intracranial gliomas: Relationship between magnetic resonance imaging criteria and tumor type and grade [J].
Bentley, R. T. ;
Ober, C. P. ;
Anderson, K. L. ;
Feeney, D. A. ;
Naughton, J. F. ;
Ohlfest, J. R. ;
O'Sullivan, M. G. ;
Miller, M. A. ;
Constable, P. D. ;
Pluhar, G. E. .
VETERINARY JOURNAL, 2013, 198 (02) :463-471
[5]   Multi-institutional Validation of a Novel Textural Analysis Tool for Preoperative Stratification of Suspected Thyroid Tumors on Diffusion-Weighted MRI [J].
Brown, Anna M. ;
Nagala, Sidhartha ;
McLean, Mary A. ;
Lu, Yonggang ;
Scoffings, Daniel ;
Apte, Aditya ;
Gonen, Mithat ;
Stambuk, Hilda E. ;
Shaha, Ashok R. ;
Tuttle, R. Michael ;
Deasy, Joseph O. ;
Priest, Andrew N. ;
Jani, Piyush ;
Shukla-Dave, Amita ;
Griffiths, John .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (04) :1708-1716
[6]   Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma [J].
Buckner, Jan C. ;
Shaw, Edward G. ;
Pugh, Stephanie L. ;
Chakravarti, Arnab ;
Gilbert, Mark R. ;
Barger, Geoffrey R. ;
Coons, Stephen ;
Ricci, Peter ;
Bullard, Dennis ;
Brown, Paul D. ;
Stelzer, Keith ;
Brachman, David ;
Suh, John H. ;
Schultz, Christopher J. ;
Bahary, Jean-Paul ;
Fisher, Barbara J. ;
Kim, Harold ;
Murtha, Albert D. ;
Bell, Erica H. ;
Won, Minhee ;
Mehta, Minesh P. ;
Curran, Walter J., Jr. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 374 (14) :1344-1355
[7]   Phase III Trial of Chemoradiotherapy for Anaplastic Oligodendroglioma: Long-Term Results of RTOG 9402 [J].
Cairncross, Gregory ;
Wang, Meihua ;
Shaw, Edward ;
Jenkins, Robert ;
Brachman, David ;
Buckner, Jan ;
Fink, Karen ;
Souhami, Luis ;
Laperriere, Normand ;
Curran, Walter ;
Mehta, Minesh .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (03) :337-343
[8]   Texture analysis of medical images [J].
Castellano, G ;
Bonilha, L ;
Li, LM ;
Cendes, F .
CLINICAL RADIOLOGY, 2004, 59 (12) :1061-1069
[9]   Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients [J].
Chaddad, Ahmad ;
Tanougast, Camel .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (11) :1707-1718
[10]   Magnetic Resonance Spectroscopy, Positron emission Tomography and Radiogenomics-Relevance to Glioma [J].
Chiang, Gloria C. ;
Kovanlikaya, Ilhami ;
Choi, Changho ;
Ramakrishna, Rohan ;
Magge, Rajiv ;
Shungu, Dikoma C. .
FRONTIERS IN NEUROLOGY, 2018, 9