DanteR: an extensible R-based tool for quantitative analysis of -omics data

被引:113
作者
Taverner, Tom [1 ]
Karpievitch, Yuliya V. [1 ,2 ]
Polpitiya, Ashoka D. [3 ]
Brown, Joseph N. [1 ]
Dabney, Alan R. [4 ]
Anderson, Gordon A. [1 ]
Smith, Richard D. [1 ]
机构
[1] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA
[2] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia
[3] Translat Genom Res Inst, Ctr Prote, Phoenix, AZ 85004 USA
[4] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家卫生研究院;
关键词
NORMALIZATION;
D O I
10.1093/bioinformatics/bts449
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The size and complex nature of mass spectrometry-based proteomics datasets motivate development of specialized software for statistical data analysis and exploration. We present DanteR, a graphical R package that features extensive statistical and diagnostic functions for quantitative proteomics data analysis, including normalization, imputation, hypothesis testing, interactive visualization and peptide-to-protein rollup. More importantly, users can easily extend the existing functionality by including their own algorithms under the Add-On tab.
引用
收藏
页码:2404 / 2406
页数:3
相关论文
共 7 条
[1]   Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics [J].
Callister, SJ ;
Barry, RC ;
Adkins, JN ;
Johnson, ET ;
Qian, WJ ;
Webb-Robertson, BJM ;
Smith, RD ;
Lipton, MS .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (02) :277-286
[2]   A statistical framework for protein quantitation in bottom-up MS-based proteomics [J].
Karpievitch, Yuliya ;
Stanley, Jeff ;
Taverner, Thomas ;
Huang, Jianhua ;
Adkins, Joshua N. ;
Ansong, Charles ;
Heffron, Fred ;
Metz, Thomas O. ;
Qian, Wei-Jun ;
Yoon, Hyunjin ;
Smith, Richard D. ;
Dabney, Alan R. .
BIOINFORMATICS, 2009, 25 (16) :2028-2034
[3]   Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition [J].
Karpievitch, Yuliya V. ;
Taverner, Thomas ;
Adkins, Joshua N. ;
Callister, Stephen J. ;
Anderson, Gordon A. ;
Smith, Richard D. ;
Dabney, Alan R. .
BIOINFORMATICS, 2009, 25 (19) :2573-2580
[4]   A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics [J].
Nesvizhskii, Alexey I. .
JOURNAL OF PROTEOMICS, 2010, 73 (11) :2092-2123
[5]   DAnTE: a statistical tool for quantitative analysis of -omics data [J].
Polpitiya, Ashoka D. ;
Qian, Wei-Jun ;
Jaitly, Navdeep ;
Petyuk, Vladislav A. ;
Adkins, Joshua N. ;
Camp, David G., II ;
Anderson, Gordon A. ;
Smith, Richard D. .
BIOINFORMATICS, 2008, 24 (13) :1556-1558
[6]   GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data [J].
Rigbolt, Kristoffer T. G. ;
Vanselow, Jens T. ;
Blagoev, Blagoy .
MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (08)
[7]   Missing value estimation methods for DNA microarrays [J].
Troyanskaya, O ;
Cantor, M ;
Sherlock, G ;
Brown, P ;
Hastie, T ;
Tibshirani, R ;
Botstein, D ;
Altman, RB .
BIOINFORMATICS, 2001, 17 (06) :520-525