Static H2 and H∞ output-feedback of discrete-time LTI systems with state multiplicative noise

被引:47
作者
Gershon, E [1 ]
Shaked, U
机构
[1] Holon Acad Inst Technol, Dept Elect & Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
关键词
stochastic H-infinity control; static output-feedback; polytopic uncertainty;
D O I
10.1016/j.sysconle.2005.07.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A parameter dependent approach for designing static output-feedback controller for linear time-invariant systems with state-multiplicative noise is introduced which achieves a minimum bound on either the stochastic H-2 or the H-infinity performance levels. A solution is obtained also for the case where, in addition to the stochastic parameters, the system matrices reside in a given polytope. In this case, a parameter dependent Lyapunov function is described which enables the derivation of the required constant feedback gain via a solution of a set of linear matrix inequalities that correspond to the vertices of the uncertainty polytope. The stochastic parameters appear in both the dynamics and the input matrices of the state space model of the system. The problems are solved using the expected value of the standard performance indices over the stochastic parameters. The theory developed is demonstrated by a simple example. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 239
页数:8
相关论文
共 25 条
[1]  
BERNSTEIN DS, 1989, AMER CONTR CONF CONF, P2506
[2]   Stochastic H2/H∞ control with state-dependent noise [J].
Chen, BS ;
Zhang, WH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (01) :45-57
[3]  
Costa O.L.V., 1996, J MATH SYST EST CONT, V6, P1
[4]   Sufficient LMI conditions for output feedback control problems [J].
Crusius, CAR ;
Trofino, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :1053-1057
[5]   A new discrete-time robust stability conditions [J].
de Oliveira, MC ;
Bernussou, J ;
Geromel, JC .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :261-265
[6]   A small gain theorem for linear stochastic systems [J].
Dragan, V ;
Halanay, A ;
Stoica, A .
SYSTEMS & CONTROL LETTERS, 1997, 30 (05) :243-251
[7]   OPTIMAL STABILIZING COMPENSATOR FOR LINEAR-SYSTEMS WITH STATE-DEPENDENT NOISE [J].
DRAGAN, V ;
MOROZAN, T ;
HALANAY, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1992, 10 (05) :557-572
[8]  
DRAGAN V, 1998, REPRINT SER I MATH R, V10
[9]  
El Bouhtouri A, 1999, INT J ROBUST NONLIN, V9, P923, DOI 10.1002/(SICI)1099-1239(199911)9:13<923::AID-RNC444>3.0.CO
[10]  
2-2