Effects of elevated CO2 and soil water content on phytohormone transcript induction in Glycine max after Popillia japonica feeding

被引:22
|
作者
Casteel, Clare L. [1 ,2 ]
Niziolek, Olivia K. [1 ,2 ]
Leakey, Andrew D. B. [1 ,2 ]
Berenbaum, May R. [2 ,3 ]
DeLucia, Evan H. [1 ,2 ]
机构
[1] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA
基金
美国农业部;
关键词
Global change; Carbon dioxide; Soybean; Japanese beetle; Drought; Induced defenses; Plant-insect interactions; PLANT-HERBIVORE INTERACTIONS; ATMOSPHERIC CARBON-DIOXIDE; PROTEINASE-INHIBITORS; NITROGEN; CONSEQUENCES; DEFENSE; LEAVES; AVAILABILITY; METAANALYSIS; TEMPERATURE;
D O I
10.1007/s11829-012-9195-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Plants will experience increased atmospheric CO2 and drought in the future, possibly altering plant-insect dynamics. To investigate the combined effects of these components of global change on plant-insect interactions, three major hormone signaling pathways [jasmonic acid (JA), salicylic acid (SA), and ethylene (ET)] and related defenses were examined in undamaged soybean (Glycine max) leaves and after Japanese beetle (Popillia japonica) feeding; plants were grown under elevated CO2 and reduced soil water both independently and simultaneously. Nutritional quality and Japanese beetle preference for leaf tissue grown under these different conditions also were determined. Elevated CO2 increased the concentration of leaf sugars and dampened JA signaling transcripts but increased the abundance of SA compared with plants grown in ambient CO2. A mild reduction in soil water content had no effect on leaf sugars but stimulated the induction of transcripts related to JA and ET biosynthesis after herbivory. When applied in combination, elevated CO2 and reduced soil water content suppressed the expression of transcripts related to JA and ET gene transcription. Exposure to elevated CO2 alone increased susceptibility of soybean to beetle damage. However, exposure to elevated CO2 in combination with reduced soil water content negated the impact of elevated CO2, leaving susceptibility unchanged. Predicting future crop resistance to pests must take into account interactions among individual components of global climate change.
引用
收藏
页码:439 / 447
页数:9
相关论文
共 50 条
  • [41] Effects of climate change and elevated atmospheric CO2 on soil organic carbon: a response equation
    Lin, Zhongbing
    Zhang, Renduo
    CLIMATIC CHANGE, 2012, 113 (02) : 107 - 120
  • [42] Effect of Soil Volumetric Water Content on the CO2 Diffusion Coefficient
    Sun, Qisong
    Hu, Junguo
    Jiang, Junjie
    Gu, Kechen
    Zhu, Chao
    Pan, Chenxin
    Yin, Wenjie
    Sofo, Adriano
    SUSTAINABILITY, 2023, 15 (16)
  • [43] Testing the "source-sink" hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max
    Ainsworth, EA
    Rogers, A
    Nelson, R
    Long, SP
    AGRICULTURAL AND FOREST METEOROLOGY, 2004, 122 (1-2) : 85 - 94
  • [44] Effects of elevated CO2 concentration and experimental warming on morphological, physiological, and biochemical responses of winter wheat under soil water deficiency
    Chang, Zhijie
    Hao, Lihua
    Lu, Yunze
    Liu, Liang
    Chen, Changhua
    Shi, Wei
    Li, Yue
    Wang, Yanrui
    Tian, Yinshuai
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [45] Elevated CO2 counteracts effects of water stress on woody rangeland-encroaching species
    O'Connor, Rory C.
    Blumenthal, Dana M.
    Ocheltree, Troy W.
    Nippert, Jesse B.
    TREE PHYSIOLOGY, 2023, : 46 - 57
  • [46] Relationship between soil CO2 fluxes and soil moisture: Anaerobic sources explain fluxes at high water content
    Fairbairn, Linden
    Rezanezhad, Fereidoun
    Gharasoo, Mehdi
    Parsons, Chris T.
    Macrae, Merrin L.
    Slowinski, Stephanie
    Van Cappellen, Philippe
    GEODERMA, 2023, 434
  • [47] Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates
    Clements, Jeff C.
    Darrow, Elizabeth S.
    HYDROBIOLOGIA, 2018, 820 (01) : 1 - 21
  • [48] A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for Horticulture
    Prior, Stephen A.
    Runion, G. Brett
    Marble, S. Christopher
    Rogers, Hugo H.
    Gilliam, Charles H.
    Torbert, H. Allen
    HORTSCIENCE, 2011, 46 (02) : 158 - 162
  • [49] Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates
    Jeff C. Clements
    Elizabeth S. Darrow
    Hydrobiologia, 2018, 820 : 1 - 21
  • [50] Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria
    Carrillo, Yolima
    Dijkstra, Feike
    LeCain, Dan
    Blumenthal, Dana
    Pendall, Elise
    ECOLOGY LETTERS, 2018, 21 (11) : 1639 - 1648