Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem

被引:8
|
作者
Diacu, Florin [1 ,2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 2Y2, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
关键词
N-BODY PROBLEM; POLYGONAL HOMOGRAPHIC ORBITS; RELATIVE EQUILIBRIA; INTRINSIC APPROACH; SPACES; EXISTENCE; STABILITY;
D O I
10.1063/1.4967443
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 3-body problem of celestial mechanics in Euclidean, elliptic, and hyperbolic spaces and study how the Lagrangian (equilateral) relative equilibria bifurcate when the Gaussian curvature varies. We thus prove the existence of new classes of orbits. In particular, we find some families of isosceles triangles, which occur in elliptic space. Published by AIP Publishing.
引用
收藏
页数:20
相关论文
共 42 条
  • [1] All the Lagrangian relative equilibria of the curved 3-body problem have equal masses
    Diacu, Florin
    Popa, Sergiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [2] RECTANGULAR ORBITS OF THE CURVED 4-BODY PROBLEM
    Diacu, Florin
    Thorn, Brendan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (04) : 1583 - 1593
  • [3] PERIODIC ORBITS FOR THE PERTURBED PLANAR CIRCULAR RESTRICTED 3-BODY PROBLEM
    Abouelmagd, Elbaz, I
    Garcia Guirao, Juan Luis
    Libre, Jaume L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03): : 1007 - 1020
  • [4] The Classical N-body Problem in the Context of Curved Space
    Diacu, Florin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (04): : 790 - 806
  • [5] Periodic orbits and bifurcations in the Sitnikov four-body problem
    P. S. Soulis
    K. E. Papadakis
    T. Bountis
    Celestial Mechanics and Dynamical Astronomy, 2008, 100 : 251 - 266
  • [6] Periodic orbits and bifurcations in the Sitnikov four-body problem
    Soulis, P. S.
    Papadakis, K. E.
    Bountis, T.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 100 (04) : 251 - 266
  • [7] Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem
    Fujiwara, Toshiaki
    Perez-Chavela, Ernesto
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (06) : 803 - 824
  • [9] BIFURCATIONS OF SEPARATRICES IN THE AVERAGED PLANAR GENERAL 3-BODY PROBLEM AT 1ST-ORDER RESONANCE
    SHINKIN, VN
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (03) : 307 - 315
  • [10] EULERIAN RELATIVE EQUILIBRIA OF THE CURVED 3-BODY PROBLEMS IN S2
    Zhu, Shuqiang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2837 - 2848