Hausdorff dimensions of sets related to Luroth expansion

被引:4
作者
Gui, Y. [1 ]
Li, W. [2 ]
机构
[1] HuBei Univ Sci & Technol, Sch Math & Stat, Xianning 437100, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Dept Math, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Luroth expansion; group frequency; Hausdorff dimension;
D O I
10.1007/s10474-016-0661-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two classes of sets of real numbers related to Luroth expansions and obtain their Hausdorff dimensions. One is determined by prescribed group frequencies of digits in their Luroth expansions. It is proved that the Hausdorff dimension of such a set is equal to the supremum of the Hausdorff dimensions for sets of real numbers with prescribed digit frequencies in their Luroth expansion. The other is determined by randomly selecting the digits in their Luroth expansion from a finite number of given digit sets.
引用
收藏
页码:286 / 302
页数:17
相关论文
共 6 条
  • [1] Frequency of digits in the Luroth expansion
    Barreira, Luis
    Iommi, Godofredo
    [J]. JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1479 - 1490
  • [2] Dimension of Besicovitch-Eggleston sets in countable symbolic space
    Fan, Aihua
    Liao, Lingmin
    Ma, Jihua
    Wang, Baowei
    [J]. NONLINEARITY, 2010, 23 (05) : 1185 - 1197
  • [3] Hua S., 1994, ACTA MATH APPL SIN, V17, P551
  • [4] On the comparison theorem of the GTOR method
    Li, W
    [J]. ACTA MATHEMATICA SCIENTIA, 1998, 18 (01) : 90 - 94
  • [5] Luroth, 1883, MATH ANN, V21, P411, DOI DOI 10.1007/BF01443883
  • [6] Mauldin RD, 1996, P LOND MATH SOC, V73, P105