Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches

被引:234
作者
Xu, Peipeng [1 ,2 ]
Zheng, Jiajiu [1 ]
Doylend, Jonathan K. [3 ]
Majumdar, Arka [1 ,4 ]
机构
[1] Univ Washington, Dept Elect & Comp Engn, Seattle, WA 98195 USA
[2] Ningbo Univ, Adv Technol Res Inst, Lab Infrared Mat & Devices, Ningbo 315211, Zhejiang, Peoples R China
[3] Intel Corp, Silicon Photon Prod Div, Santa Clara, CA 95054 USA
[4] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家卫生研究院; 中国国家自然科学基金; 美国国家科学基金会;
关键词
phase-change materials; silicon photonics; integrated photonic devices; nonvolatile; reconfigurable photonics; optical switches; CHIP; MEMORY;
D O I
10.1021/acsphotonics.8b01628
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An optical equivalent of the field-programmable gate array (FPGA) is of great interest to large-scale photonic integrated circuits. Previous programmable photonic devices relying on the weak, volatile thermo-optic or electro-optic effect usually suffer from a large footprint and high energy consumption. Phase change materials (PCMs) offer a promising solution due to the large nonvolatile change in the refractive index upon phase transition. However, the large optical loss in PCMs poses a serious problem. Here, by exploiting an asymmetric directional coupler design, we demonstrate nonvolatile PCM-clad silicon photonic 1 x 2 and 2 x 2 switches with a low insertion loss of similar to 1 dB and a compact coupling length of similar to 30 mu m while maintaining a small crosstalk less than -10 dB over a bandwidth of 30 nm. The reported optical switches will function as the building blocks of the meshes in the optical FPGAs for applications such as optical interconnects, neuromorphic computing, quantum computing, and microwave photonics.
引用
收藏
页码:553 / 557
页数:9
相关论文
共 39 条
[1]   Birth of the programmable optical chip [J].
不详 .
NATURE PHOTONICS, 2016, 10 (01) :1-1
[2]   Low-loss and broadband 2 x 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers [J].
Chen, Sitao ;
Shi, Yaocheng ;
He, Sailing ;
Dai, Daoxin .
OPTICS LETTERS, 2016, 41 (04) :836-839
[3]   On-chip photonic synapse [J].
Cheng, Zengguang ;
Rios, Carlos ;
Pernice, Wolfram H. P. ;
Wright, C. David ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2017, 3 (09)
[4]  
Dong W., 2018, ADV FUNCT MATER
[5]   Calculating with light using a chip-scale all-optical abacus [J].
Feldmann, J. ;
Stegmaier, M. ;
Gruhler, N. ;
Rios, C. ;
Bhaskaran, H. ;
Wright, C. D. ;
Pernice, W. H. P. .
NATURE COMMUNICATIONS, 2017, 8
[6]   Towards fabless silicon photonics [J].
Hochberg, Michael ;
Baehr-Jones, Tom .
NATURE PHOTONICS, 2010, 4 (08) :492-494
[7]  
Kentaro K., 2017, APPL PHYS EXPRESS, V10
[8]   Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 x 2 Switches and 1 x 1 Modulators Using a Ge2Sb2Te5 Self-Holding Layer [J].
Liang, Haibo ;
Soref, Richard ;
Mu, Jianwei ;
Majumdar, Arka ;
Li, Xun ;
Huang, Wei-Ping .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (09) :1805-1813
[9]  
Liu WL, 2016, NAT PHOTONICS, V10, P190, DOI [10.1038/NPHOTON.2015.281, 10.1038/nphoton.2015.281]
[10]   Breaking the Speed Limits of Phase-Change Memory [J].
Loke, D. ;
Lee, T. H. ;
Wang, W. J. ;
Shi, L. P. ;
Zhao, R. ;
Yeo, Y. C. ;
Chong, T. C. ;
Elliott, S. R. .
SCIENCE, 2012, 336 (6088) :1566-1569