Mehrotra-type predictor-corrector algorithms for sufficient linear complementarity problem

被引:10
作者
Liu, Hongwei [1 ]
Liu, Xinze [1 ,2 ]
Liu, Changhe [1 ,3 ]
机构
[1] Xidian Univ, Dept Math, Xian, Peoples R China
[2] Lincang Teachers Coll, Dept Math & Sci, Lincang, Peoples R China
[3] Henan Univ Sci & Technol, Dept Appl Math, Luoyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear complementarity problem; Interior-point method; Mehrotra-type algorithm; Predictor-corrector algorithm; Polynomial complexity; INTERIOR-POINT ALGORITHMS; L)-ITERATION ALGORITHM; CONVERGENCE; POLYNOMIALITY;
D O I
10.1016/j.apnum.2012.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two Mehrotra-type predictor-corrector algorithms are proposed for solving sufficient linear complementarity problems. Both algorithms are independent on the handicap chi of the problems. The first version of the Mehrotra-type algorithm is a generalization of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. [M. Salahi, J. Peng, T. Terlaky, On Mehrotra-type predictor-corrector algorithms, SIAM J. Optim. 18 (2007) 1377-1397]. We also present a new variant of Mehrotra-type predictor-corrector algorithm using a new adaptive updating strategy of the centering parameter. We show that both algorithms enjoy O(n(1 + chi)log((x(0))(T)s(0)/epsilon)) iteration complexity. Some numerical results are reported as well. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1685 / 1700
页数:16
相关论文
共 27 条
[1]   Convergence of interior point algorithms for the monotone linear complementarity problem [J].
Bonnans, JF ;
Gonzaga, CC .
MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (01) :1-25
[2]   Some disadvantages of a Mehrotra-type primal-dual corrector interior point algorithm for linear programming [J].
Cartis, Coralia .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) :1110-1119
[3]   Further development of multiple centrality correctors for interior point methods [J].
Colombo, Marco ;
Gondzio, Jacek .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 41 (03) :277-305
[4]   Corrector-predictor methods for sufficient linear complementarity problems [J].
Gurtuna, Filiz ;
Petra, Cosmin ;
Potra, Florian A. ;
Shevchenko, Olena ;
Vancea, Adrian .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (03) :453-485
[5]   PREDICTOR-CORRECTOR METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS WITH POLYNOMIAL COMPLEXITY AND SUPERLINEAR CONVERGENCE [J].
JI, J ;
POTRA, FA ;
HUANG, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 85 (01) :187-199
[6]   Global convergence properties of some iterative methods for linear complementarity problems [J].
Kanzow, C .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :326-341
[7]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[8]  
Kojima M., 1991, UNIFIED APPROACH INT
[9]   ON IMPLEMENTING MEHROTRA'S PREDICTOR-CORRECTOR INTERIOR-POINT METHOD FOR LINEAR PROGRAMMING [J].
Lustig, Irvin J. ;
Marsten, Roy E. ;
Shanno, David F. .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (03) :435-449
[10]   Asymptotic convergence in a generalized predictor-corrector method [J].
Mehrotra, S .
MATHEMATICAL PROGRAMMING, 1996, 74 (01) :11-28