Anomalous transport of particles in plasma physics

被引:31
作者
Cesbron, L. [2 ]
Mellet, A. [1 ]
Trivisa, K. [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Ecole Normale Super, F-35170 Bruz, France
基金
美国国家科学基金会;
关键词
Kinetic equations; Fokker-Planck operator; Levy statistic; Anomalous diffusion limit; Fractional heat equation; FOKKER-PLANCK EQUATION; KINETIC-EQUATIONS; DIFFUSION LIMIT;
D O I
10.1016/j.aml.2012.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the long time/small mean-free-path asymptotic behavior of the solutions of a Vlasov-Levy-Fokker-Planck equation and show that the asymptotic dynamics for the VLFP are described by an anomalous diffusion equation. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2344 / 2348
页数:5
相关论文
共 8 条
[1]   ANOMALOUS DIFFUSION LIMIT FOR KINETIC EQUATIONS WITH DEGENERATE COLLISION FREQUENCY [J].
Ben Abdallah, Naoufel ;
Mellet, Antoine ;
Puel, Marjolaine .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2249-2262
[2]  
DEGOND P, 1986, ANN SCI ECOLE NORM S, V19, P519
[3]   The Levy-Fokker-Planck equation: φ-entropies and convergence to equilibrium [J].
Gentil, Ivan ;
Imbert, Cyril .
ASYMPTOTIC ANALYSIS, 2008, 59 (3-4) :125-138
[4]  
Mellet A., 2011, KRM, V4
[5]   Fractional Diffusion Limit for Collisional Kinetic Equations: A Moments Method [J].
Mellet, Antoine .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (04) :1333-1360
[6]   Fractional Diffusion Limit for Collisional Kinetic Equations [J].
Mellet, Antoine ;
Mischler, Stephane ;
Mouhot, Clement .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (02) :493-525
[7]  
Moradi S., 2011, ARXIV11032867V2
[8]   Fractional Poincare inequalities for general measures [J].
Mouhot, Clement ;
Russ, Emmanuel ;
Sire, Yannick .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (01) :72-84