Robotic Room-Level Localization Using Multiple Sets of Sonar Measurements

被引:102
作者
Liu, Huaping [1 ]
Sun, Fuchun
Fang, Bin
Zhang, Xinyu
机构
[1] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Indoor mobile robot; multiple measurements; room-level localization; sonar measurements; structured sparse coding; SPARSE REPRESENTATION; RECOGNITION; CLASSIFICATION;
D O I
10.1109/TIM.2016.2618978
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we aim to achieve robust and cost-effective room-level localization for the indoor mobile robot. It is unrealistic to obtain precise localization information from the sonar sensors because of the sparseness and uncertainty. Our attempts show that the room-level localization can be achieved using sonar sensors by accumulating the sonar data to overcome the limitations of sensor performance. To this end, we formulate the room-level localization as a joint sparse coding problem, which encourages the coding vectors to share the common room sparsity, but different locations. We systematically evaluate the performance of the different coding strategies on the collected sonar measurement data set.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 45 条
[1]  
[Anonymous], LINEARIZED KERNEL DI
[2]  
[Anonymous], 2012, P 2012 INT C IND POS
[3]  
[Anonymous], P INT C MECH AUT JUL
[4]   Keypoint design and evaluation for place recognition in 2D lidar maps [J].
Bosse, Michael ;
Zlot, Robert .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (12) :1211-1224
[5]  
Burguera A., 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, P1367
[6]  
Burguera Antoni, 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, P4158, DOI 10.1109/IROS.2007.4399210
[7]   The Likelihood Field Approach to Sonar Scan Matching [J].
Burguera, Antoni ;
Gonzalez, Yolanda ;
Oliver, Gabriel .
2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, :2977-2982
[8]   Landmark recognition with sparse representation classification and extreme learning machine [J].
Cao, Jiuwen ;
Zhao, Yanfei ;
Lai, Xiaoping ;
Ong, Marcus Eng Hock ;
Yin, Chun ;
Koh, Zhi Xiong ;
Liu, Nan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (10) :4528-4545
[9]   Generalized Correntropy for Robust Adaptive Filtering [J].
Chen, Badong ;
Xing, Lei ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (13) :3376-3387
[10]   Sparse representation and learning in visual recognition: Theory and applications [J].
Cheng, Hong ;
Liu, Zicheng ;
Yang, Lu ;
Chen, Xuewen .
SIGNAL PROCESSING, 2013, 93 (06) :1408-1425