Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

被引:18
作者
Babbar, Rohit [1 ,2 ]
Heni, Martin [3 ,4 ,5 ]
Peter, Andreas [3 ,4 ,5 ]
de Angelis, Martin Hrabe [5 ]
Haering, Hans-Ulrich [3 ,4 ,5 ]
Fritsche, Andreas [3 ,4 ,5 ]
Preissl, Hubert [4 ,5 ,6 ]
Schoelkopf, Bernhard [1 ]
Wagner, Robert [3 ,4 ,5 ]
机构
[1] Max Planck Inst Intelligent Syst, Dept Empir Inference, Tubingen, Germany
[2] Aalto Univ, Helsinki, Finland
[3] Univ Hosp Tubingen, Div Endocrinol Diabetol Nephrol Vasc Dis & Clin C, Dept Internal Med 4, Tubingen, Germany
[4] Univ Tubingen IDM, Helmholtz Ctr Munich, Inst Diabet Res & Metab Dis, Tubingen, Germany
[5] German Ctr Diabet Res DZD, Neuherberg, Germany
[6] Univ Tubingen, Dept Pharm & Biochem, Interfac Ctr Pharmacogenom & Pharma Res, Inst Pharmaceut Sci, Tubingen, Germany
关键词
clinical study; supervised machine learning; oral glucose tolerance test; prediction; classification; impaired glucose tolerance; test-retest variability; machine learning classification; IMPAIRED FASTING GLUCOSE; INSULIN SENSITIVITY; RISK-FACTOR; CARDIOVASCULAR-DISEASE; REPRODUCIBILITY; ASSOCIATION; POPULATION; PREVALENCE; COMPLICATIONS; CHOLESTEROL;
D O I
10.3389/fendo.2018.00082
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: Impaired glucose tolerance (IGT) is diagnosed by a standardized oral glucose tolerance test (OGTT). However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state. Methods: Given a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA), proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year. Results: The most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78). For all classifiers, mean accuracy was 0.73 +/- 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77. Conclusion: Machine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a subsequent OGTT.
引用
收藏
页数:7
相关论文
共 42 条
[1]  
Alberti KGMM, 1998, DIABETIC MED, V15, P539, DOI 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO
[2]  
2-S
[3]   Strategies for Improving Care [J].
不详 .
DIABETES CARE, 2015, 38 :S5-S7
[4]   10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study [J].
Bray, G. A. ;
Chatellier, A. ;
Duncan, C. ;
Greenway, F. L. ;
Levy, E. ;
Ryan, D. H. ;
Polonsky, K. S. ;
Tobian, J. ;
Ehrmann, D. ;
Matulik, M. J. ;
Clark, B. ;
Czech, K. ;
DeSandre, C. ;
Hilbrich, R. ;
McNabb, W. ;
Semenske, A. R. ;
Goldstein, B. J. ;
Smith, K. A. ;
Wildman, W. ;
Pepe, C. ;
Goldberg, R. B. ;
Calles, J. ;
Ojito, J. ;
Castillo-Florez, S. ;
Florez, H. J. ;
Giannella, A. ;
Lara, O. ;
Veciana, B. ;
Haffner, S. M. ;
Montez, M. G. ;
Lorenzo, C. ;
Martinez, A. ;
Hamman, R. F. ;
Testaverde, L. ;
Bouffard, A. ;
Dabelea, D. ;
Jenkins, T. ;
Lenz, D. ;
Perreault, L. ;
Price, D. W. ;
Steinke, S. C. ;
Horton, E. S. ;
Poirier, C. S. ;
Swift, K. ;
Caballero, E. ;
Jackson, S. D. ;
Lambert, L. ;
Lawton, K. E. ;
Ledbury, S. ;
Kahn, S. E. .
LANCET, 2009, 374 (9702) :1677-1686
[5]   Postchallenge Glucose, A1C, and Fasting Glucose as Predictors of Type 2 Diabetes and Cardiovascular Disease A 10-year prospective cohort study [J].
Cederberg, Henna ;
Saukkonen, Tuula ;
Laakso, Mauri ;
Jokelainen, Jari ;
Harkonen, Pirjo ;
Timonen, Markku ;
Keinanen-Kiukaanniemi, Sirkka ;
Rajala, Ulla .
DIABETES CARE, 2010, 33 (09) :2077-2083
[6]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[7]   INTRA-INDIVIDUAL VARIATION OF SERUM-CHOLESTEROL, TRIGLYCERIDES AND HIGH-DENSITY LIPOPROTEIN CHOLESTEROL IN NORMAL HUMANS [J].
DEMACKER, PNM ;
SCHADE, RWB ;
JANSEN, RTP ;
VANTLAAR, A .
ATHEROSCLEROSIS, 1982, 45 (03) :259-266
[8]   INTRAINDIVIDUAL AND INTERINDIVIDUAL VARIABILITY OF GLUCOSE-TOLERANCE IN AN ELDERLY POPULATION [J].
FESKENS, EJM ;
BOWLES, CH ;
KROMHOUT, D .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1991, 44 (09) :947-953
[9]   Relationships among age, proinsulin conversion, and β-cell function in nondiabetic humans [J].
Fritsche, A ;
Madaus, A ;
Stefan, N ;
Tschritter, O ;
Maerker, E ;
Teigeler, A ;
Häring, H ;
Stumvoll, M .
DIABETES, 2002, 51 :S234-S239
[10]  
FULLER JH, 1980, LANCET, V1, P1373