Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses

被引:95
|
作者
Hu, Jianzhong [1 ]
Manduzio, Stefano [1 ]
Kang, Hunseung [1 ]
机构
[1] Chonnam Natl Univ, Coll Agr & Life Sci, Dept Appl Biol, Gwangju, South Korea
来源
FRONTIERS IN PLANT SCIENCE | 2019年 / 10卷
关键词
abiotic stress; epitranscriptome; RNA metabolism; RNA methylation; RNA modification; MESSENGER-RNA; M(6)A RNA; BINDING-PROTEIN; NUCLEAR-RNA; N-6-METHYLADENOSINE; ARABIDOPSIS; EXPRESSION; DEMETHYLASE; TRANSLATION; HOMOLOG;
D O I
10.3389/fpls.2019.00500
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N-6-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Epitranscriptomic mRNA modifications governing plant stress responses: underlying mechanism and potential application
    Hu, Jianzhong
    Cai, Jing
    Xu, Tao
    Kang, Hunseung
    PLANT BIOTECHNOLOGY JOURNAL, 2022, 20 (12) : 2245 - 2257
  • [22] The Endoplasmic Reticulum Role in the Plant Response to Abiotic Stress
    Reyes-Impellizzeri, Sofia
    Moreno, Adrian A.
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [23] RNA methylation in mammalian development and cancer
    Song, Peizhe
    Tayier, Subiding
    Cai, Zhihe
    Jia, Guifang
    CELL BIOLOGY AND TOXICOLOGY, 2021, 37 (06) : 811 - 831
  • [24] Epitranscriptomic regulation by m6A RNA methylation in brain development and diseases
    Chokkalla, Anil K.
    Mehta, Suresh L.
    Vemuganti, Raghu
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2020, 40 (12): : 2331 - 2349
  • [25] Lipid signalling in plant responses to abiotic stress
    Hou, Quancan
    Ufer, Guido
    Bartels, Dorothea
    PLANT CELL AND ENVIRONMENT, 2016, 39 (05): : 1029 - 1048
  • [26] Epigenetic control of plant abiotic stress responses
    Ma, Lijun
    Xing, Lihe
    Li, Zicong
    Jiang, Danhua
    JOURNAL OF GENETICS AND GENOMICS, 2025, 52 (02): : 129 - 144
  • [27] Are karrikins involved in plant abiotic stress responses?
    Li, Weiqiang
    Tran, Lam-Son Phan
    TRENDS IN PLANT SCIENCE, 2015, 20 (09) : 535 - 538
  • [28] Alternative splicing in plant abiotic stress responses
    Punzo, Paola
    Grillo, Stefania
    Batelli, Giorgia
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (05) : 2117 - 2126
  • [29] PHD finger proteins function in plant development and abiotic stress responses: an overview
    Quan, Wenli
    Chan, Zhulong
    Wei, Piwei
    Mao, Yahui
    Bartels, Dorothea
    Liu, Xun
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [30] Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses
    Shu, Kai
    Zhou, Wenguan
    Chen, Feng
    Luo, Xiaofeng
    Yang, Wenyu
    FRONTIERS IN PLANT SCIENCE, 2018, 9