Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses

被引:95
|
作者
Hu, Jianzhong [1 ]
Manduzio, Stefano [1 ]
Kang, Hunseung [1 ]
机构
[1] Chonnam Natl Univ, Coll Agr & Life Sci, Dept Appl Biol, Gwangju, South Korea
来源
FRONTIERS IN PLANT SCIENCE | 2019年 / 10卷
关键词
abiotic stress; epitranscriptome; RNA metabolism; RNA methylation; RNA modification; MESSENGER-RNA; M(6)A RNA; BINDING-PROTEIN; NUCLEAR-RNA; N-6-METHYLADENOSINE; ARABIDOPSIS; EXPRESSION; DEMETHYLASE; TRANSLATION; HOMOLOG;
D O I
10.3389/fpls.2019.00500
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N-6-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Potential roles of mitochondrial carrier proteins in plant responses to abiotic stress
    Monteiro-Batista, Rita de Cassia
    Siqueira, Joao Antonio
    da Fonseca-Pereira, Paula
    Barreto, Pedro
    Feitosa-Araujo, Elias
    Araujo, Wagner L.
    Nunes-Nesi, Adriano
    JOURNAL OF EXPERIMENTAL BOTANY, 2025,
  • [12] Plant polyamines in abiotic stress responses
    Kamala Gupta
    Abhijit Dey
    Bhaskar Gupta
    Acta Physiologiae Plantarum, 2013, 35 : 2015 - 2036
  • [13] Plant miRNAs and abiotic stress responses
    Lu, Xiao-Yan
    Huang, Xue-Lin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 368 (03) : 458 - 462
  • [14] SUMO, a heavyweight player in plant abiotic stress responses
    Humberto Castro, Pedro
    Tavares, Rui Manuel
    Bejarano, Eduardo R.
    Azevedo, Herlander
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2012, 69 (19) : 3269 - 3283
  • [15] NAC transcription factors in plant abiotic stress responses
    Nakashima, Kazuo
    Takasaki, Hironori
    Mizoi, Junya
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 97 - 103
  • [16] Plant polyamines in abiotic stress responses
    Gupta, Kamala
    Dey, Abhijit
    Gupta, Bhaskar
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (07) : 2015 - 2036
  • [17] SUMO, a heavyweight player in plant abiotic stress responses
    Pedro Humberto Castro
    Rui Manuel Tavares
    Eduardo R. Bejarano
    Herlânder Azevedo
    Cellular and Molecular Life Sciences, 2012, 69 : 3269 - 3283
  • [18] Chromatin modifications and remodeling in plant abiotic stress responses
    Luo, Ming
    Liu, Xuncheng
    Singh, Prashant
    Cui, Yuhai
    Zimmerli, Laurent
    Wu, Keqiang
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 129 - 136
  • [19] DNA Methylation in Plant Responses and Adaption to Abiotic Stresses
    Sun, Minghui
    Yang, Zhuo
    Liu, Li
    Duan, Liu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [20] Auxin and abiotic stress responses
    Jing, Hongwei
    Wilkinson, Edward G.
    Sageman-Furnas, Katelyn
    Strader, Lucia C.
    JOURNAL OF EXPERIMENTAL BOTANY, 2023, 74 (22) : 7000 - 7014