Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses

被引:95
|
作者
Hu, Jianzhong [1 ]
Manduzio, Stefano [1 ]
Kang, Hunseung [1 ]
机构
[1] Chonnam Natl Univ, Coll Agr & Life Sci, Dept Appl Biol, Gwangju, South Korea
来源
FRONTIERS IN PLANT SCIENCE | 2019年 / 10卷
关键词
abiotic stress; epitranscriptome; RNA metabolism; RNA methylation; RNA modification; MESSENGER-RNA; M(6)A RNA; BINDING-PROTEIN; NUCLEAR-RNA; N-6-METHYLADENOSINE; ARABIDOPSIS; EXPRESSION; DEMETHYLASE; TRANSLATION; HOMOLOG;
D O I
10.3389/fpls.2019.00500
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N-6-methyladenosine (m(6)A) and 5-methylcytidine (m(5)C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses
    Lee, Kwanuk
    Kang, Hunseung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (12) : 1 - 17
  • [2] RNA regulation in plant abiotic stress responses
    Nakaminami, Kentaro
    Matsui, Akihiro
    Shinozaki, Kazuo
    Seki, Motoaki
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 149 - 153
  • [3] Functional Characterization of a Putative RNA Demethylase ALKBH6 in Arabidopsis Growth and Abiotic Stress Responses
    Huong, Trinh Thi
    Ngoc, Le Nguyen Tieu
    Kang, Hunseung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 14
  • [4] Regulation of RNA Metabolism in Plant Development and Stress Responses
    Jung, Hyun Ju
    Park, Su Jung
    Kang, Hunseung
    JOURNAL OF PLANT BIOLOGY, 2013, 56 (03) : 123 - 129
  • [5] Histone methylation in plant responses to abiotic stresses
    Yu, Mei-Hui
    Liao, Wen-Chi
    Wu, Keqiang
    JOURNAL OF EXPERIMENTAL BOTANY, 2025,
  • [6] Regulation of RNA metabolism in plant development and stress responses
    Hyun Ju Jung
    Su Jung Park
    Hunseung Kang
    Journal of Plant Biology, 2013, 56 : 123 - 129
  • [7] SNAREs in Plant Biotic and Abiotic Stress Responses
    Kwon, Chian
    Lee, Jae-Hoon
    Yun, Hye Sup
    MOLECULES AND CELLS, 2020, 43 (06) : 501 - 508
  • [8] Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory
    Liu, Junzhong
    He, Zuhua
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [9] Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses
    Tripathy, Manas K.
    Deswal, Renu
    Sopory, Sudhir K.
    CURRENT GENOMICS, 2021, 22 (01) : 26 - 40
  • [10] Plant Peptides Involved in ROS Signalling and Biotic and Abiotic Stress Responses
    Chowdhary, Noor Alam
    Songachan, L. S.
    INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2025, 31 (03)