Mixed quantum skew Howe duality and link invariants of type A

被引:14
|
作者
Queffelec, Hoel [1 ]
Sartori, Antonio [1 ]
机构
[1] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, Montpellier, France
关键词
Webs; Spider category; Quantum Lie superalgebras; Skew-Howe duality; HOMFLY-PT polynomial; Reshetikhin-Turaev invariants; POLYNOMIAL INVARIANT; CATEGORIFICATION; REPRESENTATIONS; ALGEBRAS; HOMOLOGY; KNOTS;
D O I
10.1016/j.jpaa.2018.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a ribbon category Sp(beta), depending on a parameter beta, which encompasses Cautis, Kamnitzer and Morrison's spider category, and describes for beta = m - n the monoidal category of representations of U-q(gl(m vertical bar n)) generated by exterior powers of the vector representation and their duals. We identify this category Sp(beta) with a direct limit of quotients of a dual idempotented quantum group (U) over dot(q) (gl(r+s)), proving a mixed version of skew Howe duality in which exterior powers and their duals appear at the same time. We show that the category Sp(beta) gives a unified natural setting for defining the colored gl(m vertical bar n) link invariant (for beta = m - n) and the colored HOMFLY-PT polynomial (for beta generic). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2733 / 2779
页数:47
相关论文
共 20 条
  • [1] On a symplectic quantum Howe duality
    Bodish, Elijah
    Tubbenhauer, Daniel
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (04)
  • [2] Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality
    Ehrig, Michael
    Stroppel, Catharina
    ADVANCES IN MATHEMATICS, 2018, 331 : 58 - 142
  • [3] Categorified skew Howe duality and comparison of knot homologies
    Mackaay, Marco
    Webster, Ben
    ADVANCES IN MATHEMATICS, 2018, 330 : 876 - 945
  • [4] Orthogonal Toroidal Lie Algebras, Vertex Algebras and Skew Howe Duality
    Chen, Fulin
    Huang, Xin
    Tan, Shaobin
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 301 - 312
  • [5] Howe duality for quantum queer superalgebras
    Chang, Zhihua
    Wang, Yongjie
    JOURNAL OF ALGEBRA, 2020, 547 : 358 - 378
  • [6] Skein Modules from Skew Howe Duality and Affine Extensions
    Queffelec, Hoel
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [7] Combinatorial Howe duality of symplectic type
    Heo, Taehyeok
    Kwon, Jae-Hoon
    JOURNAL OF ALGEBRA, 2022, 600 : 1 - 44
  • [8] The sln foam 2-category: A combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality
    Queffelec, Hoel
    Rose, David E. V.
    ADVANCES IN MATHEMATICS, 2016, 302 : 1251 - 1339
  • [9] Rotational virtual knots and quantum link invariants
    Kauffman, Louis H.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (13)
  • [10] Khovanov homology is a skew Howe 2-representation of categorified quantum slm
    Lauda, Aaron D.
    Queffelec, Hoel
    Rose, David E. V.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (05): : 2517 - 2608