Global well-posedness for the 2-D nonhomogeneous incompressible MHD equations with large initial data

被引:4
作者
Zhai, Xiaoping [1 ]
Li, Yongsheng [2 ]
Xu, Huan [3 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[3] Auburn Univ, Dept Math, Auburn, AL 36849 USA
关键词
Global well-posedness; MHD equations; Besov space; DENSITY; SYSTEM; REGULARITY; EXISTENCE;
D O I
10.1016/j.nonrwa.2016.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the 2-D nonhomogeneous incompressible magnetohydrodynamic equations with variable viscosity and variable conductivity. We obtain the global existence of solutions for this system with initial data in the scaling invariant Besov spaces and without size restriction for the initial velocity and magnetic field. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 27 条
[1]  
Abidi H, 2008, P ROY SOC EDINB A, V138, P447
[2]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[3]   On the Wellposedness of Three-Dimensional Inhomogeneous Navier-Stokes Equations in the Critical Spaces [J].
Abidi, Hammadi ;
Gui, Guilong ;
Zhang, Ping .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) :189-230
[4]   On the Decay and Stability of Global Solutions to the 3D Inhomogeneous Navier-Stokes Equations [J].
Abidi, Hammadi ;
Gui, Guilong ;
Zhang, Ping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (06) :832-881
[5]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[6]   Two regularity criteria for the 3D MHD equations [J].
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2263-2274
[7]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[8]   Strong solutions to the incompressible magnetohydrodynamic equations [J].
Chen, Qing ;
Tan, Zhong ;
Wang, Yanjin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (01) :94-107
[9]   Incompressible Flows with Piecewise Constant Density [J].
Danchin, Raphael ;
Mucha, Piotr Boguslaw .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (03) :991-1023
[10]   A Lagrangian Approach for the Incompressible Navier-Stokes Equations with Variable Density [J].
Danchin, Raphael ;
Mucha, Piotr Boguslaw .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (10) :1458-1480