Phase Transformation Comparison of TiO2 Nanorods and TiO2 Thin Film After Annealing

被引:15
作者
Chen, Yi [1 ]
Yang, Sang Yeol [1 ]
Kim, Jaehwan [1 ]
机构
[1] Inha Univ, Dept Mech Engn, Creat Res Ctr EAPap Actuator, Inchon 402751, South Korea
关键词
titanium dioxide; annealing; nanorod; thin film; phase transformation;
D O I
10.1007/s13391-012-1106-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reports the degree of phase transformation of titanium dioxide (TiO2) thin film and TiO2 nanorods before and after annealing. TiO2 nanorods were synthesized with titanium isoproxide (TIP) in Oleic acid, having approximately 5 nm diameter and 30 nm length. TiO2 thin film was fabricated by sol-gel method using TIP, ethanol and hydrochloric acid. The characteristics of TiO2 nanorods and thin film were investigated with transmission electron microscope, atomic force microscope and x-ray diffraction patterns. Although the TiO2 thin film shows no crystallite peak, as-synthesized TiO2 nanorods show broad anatase phase diffraction peaks. After annealing the TiO2 nanorods at 850 degrees C for 3 h, only approximately 3.1% of crystallite phase was transformed from anatase phase to rutile phase. This slow phase transformation might be due to the small diameter of the nanorods, which is thermodynamically more stable than the anatase crystallite phase. However, although the film has small grains on the surface, approximately 59.5% of phase was transformed from anatase to rutile crystallite structure after the thin film annealing. This large amount of phase transformation might be due to the two dimensional structure of the thin film.
引用
收藏
页码:301 / 304
页数:4
相关论文
共 14 条
[1]   Optical dispersion in spun nanocrystalline titania thin films [J].
Capan, R ;
Chaure, NB ;
Hassan, AK ;
Ray, AK .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2004, 19 (02) :198-202
[2]   Cause of Slow Phase Transformation of TiO2 Nanorods [J].
Chen, Y. ;
Kang, K. S. ;
Yoo, K. H. ;
Jyoti, N. ;
Kim, Jaehwan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) :19753-19755
[3]   Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods [J].
Cozzoli, PD ;
Kornowski, A ;
Weller, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (47) :14539-14548
[4]   Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals [J].
Jun, YW ;
Casula, MF ;
Sim, JH ;
Kim, SY ;
Cheon, J ;
Alivisatos, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (51) :15981-15985
[5]   Crystal Structure of TiO2 Thin Films grown on Sapphire Substrates by RF Sputtering as a Function of Temperature [J].
Lee, Geun-Hyoung ;
Kim, Min-Sung .
ELECTRONIC MATERIALS LETTERS, 2010, 6 (02) :77-80
[6]   Near monodisperse TiO2 nanoparticles and nanorods [J].
Li, XL ;
Peng, Q ;
Yi, JX ;
Wang, X ;
Li, YD .
CHEMISTRY-A EUROPEAN JOURNAL, 2006, 12 (08) :2383-2391
[7]   Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor [J].
Nian, JN ;
Teng, HS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (09) :4193-4198
[8]   Microwave irradiation as an alternative source for conventional annealing:: a study of pure TiO2, NiTiO3, CdTiO3 thin films by a sol-gel process for electronic applications [J].
Phani, A. R. ;
Santucci, S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (30) :6965-6978
[9]   Structural evolution of TiO2 nanocrystalline thin films by thermal annealing and swift heavy ion irradiation [J].
Rath, H. ;
Dash, P. ;
Som, T. ;
Satyam, P. V. ;
Singh, U. P. ;
Kulriya, P. K. ;
Kanjilal, D. ;
Avasthi, D. K. ;
Mishra, N. C. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
[10]   A general strategy for nanocrystal synthesis [J].
Wang, X ;
Zhuang, J ;
Peng, Q ;
Li, YD .
NATURE, 2005, 437 (7055) :121-124