Optimality conditions for generalized differentiable interval-valued functions

被引:51
作者
Osuna-Gomez, R. [2 ]
Chalco-Cano, Y. [1 ]
Hernandez-Jimenez, B. [3 ]
Ruiz-Garzon, G. [4 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Univ Seville, Dept Estadist & IO, E-41012 Seville, Spain
[3] Univ Pablo de Olavide, Dept Econ Metodos Cuantitat & H Econ, Area Estadist & IO, Seville, Spain
[4] Univ Cadiz, Dept Estadist & IO, Cadiz, Spain
关键词
Interval-valued function; Generalized Hukuhara differentiability; Optimality condition; PROGRAMMING-PROBLEMS; OBJECTIVE FUNCTION; OPTIMIZATION; SUFFICIENCY; EQUATIONS; DUALITY;
D O I
10.1016/j.ins.2015.05.039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the optimal solutions set for a generalized differentiable interval-valued function. Necessary and sufficient optimality conditions are established for gH-differentiable functions. Convexity assumptions that are necessary or required to ensure the characterization of the optimal solutions are weaker or less strict than those presented in previous works. These convexity assumptions are the weakest to characterize the optimal solutions set. Known results for classical non interval-valued optimization are particular cases of the ones proved here. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 146
页数:11
相关论文
共 30 条
[1]  
Allahviranloo T., 2012, Journal of Fuzzy Set Valued Analysis, Vjfsva-00135, P1
[2]   Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system [J].
Antonio Sanz, Jose ;
Galar, Mikel ;
Jurio, Aranzazu ;
Brugos, Antonio ;
Pagola, Miguel ;
Bustince, Humberto .
APPLIED SOFT COMPUTING, 2014, 20 :103-111
[3]   Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :581-599
[4]   Calculus for interval-valued functions using generalized Hukuhara derivative and applications [J].
Chalco-Cano, Y. ;
Rufian-Lizana, A. ;
Roman-Flores, H. ;
Jimenez-Gamero, M. D. .
FUZZY SETS AND SYSTEMS, 2013, 219 :49-67
[5]   Generalized derivative and π-derivative for set-valued functions [J].
Chalco-Cano, Y. ;
Roman-Flores, H. ;
Jimenez-Gamero, M. D. .
INFORMATION SCIENCES, 2011, 181 (11) :2177-2188
[6]   Multiobjective programming in optimization of interval objective functions - A generalized approach [J].
Chanas, S ;
Kuchta, D .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 94 (03) :594-598
[7]  
Craven B.D., 1981, J AUST MATH SOC B, V24, P357
[8]   DIFFERENTIABILITY OF MULTIFUNCTIONS [J].
DEBLASI, FS .
PACIFIC JOURNAL OF MATHEMATICS, 1976, 66 (01) :67-81
[9]   Data envelopment analysis with imprecise data [J].
Despotis, DK ;
Smirlis, YG .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 140 (01) :24-36
[10]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550